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Statistical theory of elastic constants of biaxial nematic liquid crystals
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Microscopic expressions for the elastic constants of liquid crystals composed of biaxial or uniaxial mol-
ecules are derived in the case of a weak anchoring, small distortions, and a small density. Both biaxial and
uniaxial phases are considered. The expressions involve the one-particle distribution function and the potential
energy of two-body short-range interactions. The theory was used to calculate the temperature dependence of
the elastic constants for a system of rigid molecules similar to elipsoids with three different axes.
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I. INTRODUCTION In 1980 Yu and Saupe observed experimentally the biax-
ial phase in lyotropic systemd3]. The phenomenological
The understanding of the elastic constants of liquid crystheory of elastic constants and viscosity coefficients of biax-
tals is important for a number of reasons. In the first placejal nematic liquid crystals was developed by Saupe in 1981
they appear in the description of virtually all phenomena[14]. It was based on a generalization of the concepts used in
where the variation of the director is manipulated by externathe Frank-Oseen theory for uniaxial nematics. The author
fields (display devices[1]. Second, they provide unusually introduced twelve bulk elastic constaritsd three additional
sensitive probes of the microscopic structure of the orderedurface elastic constantsThree of them were assigned to
state. Valuable information regarding the nature and importwist deformations, six to bend deformations, and three to
tance of various anisotropies of the intermolecular potentialgoupling between bend and twist deformations. In Sec. VI
and of the spatial and angular correlation functions can beve will present predictions of our model for the Saupe elas-
derived from the study of the elastic constants. Knowledgeic constants.
of the elasticity of the liquid crystals is also needed in the Brand and Pleiner presented hydrodynamics of biaxial
study of defects in therf2]. There are microscopic theories nematic liquid crystals and similarly to Saupe they showed
[3-8] that give working expressions for the elastic constantshat there are twelve bulk elastic constants and three surface
of uniaxial nematic liquid crystals. Contrary to this, biaxial terms in the elastic enerdyt5,16. In our opinion, the most
nematic liquid crystals are poorly examined because theyransparent derivation of the phenomenological elastic en-
require more complex theoretical description and are difficuliergy of biaxial nematic liquid crystals was given by Stallinga
to obtain experimentally. In this paper we would like to and Vertoger{17]. That is why we will use this paper as a
present a statistical theory of the elastic constants of biaxidbasis for our considerations.
nematic liquid crystals. To provide a context for our deriva-  Kini and Chandrasekhar in 1989 discussed the feasibility
tions we remind the reader of the main results in this field. of determining some of the twelve curvature elastic constants
In 1970 Freisef9] generalized the Maier-Saupe theory by of an orthorhombic nematic liquid crystal using Saupe’s con-
incorporating molecules with nonaxial quadrupole symmetrytinuum theory. They studied the effects of external magnetic
in the interaction potential and predicted a phase transitiomnd electric fields applied in different geometrjés]. In the
sequence from isotropic to uniaxial order and then to biaxiakame year Mulder considered the isotropic-symmetry-
order on cooling the sample. In 1972 Shin and Allj&a] breaking bifurcations occurring in a class of liquid-crystal
considered a generalization of Flory’s lattice model to de-models describing particles with the symmetry of rectangular
scribe a fluid of rectangular platelike objects of any lengthslabs[19]. His main result was the classification of the sym-
and width. They found that plates that are neither very squareetries of the bifurcating solutions to the equations describ-
nor very rodlike in shape may exist in a biaxial phase at highing the stationary phases in terms of eigenvalues of the ef-
pressure. On decreasing the pressure first a uniaxial phafective pair interactions. He also introduced the set of
and next an isotropic phase appear. In 1973 Aldelj con-  symmetry-adapted functions, but it was not comp|[&@.
sidered a simple Landau theory to study phase transitions in Finally, we would like to mention the most important
a fluid of biaxial particles. His results suggest that the phasevork by Singhet al. They used a density-functional theory to
diagram of such fluid exhibits a special critical point wherederive an expression for the distorsion free energy of mo-
two second-order critical lines meet a first-order boundary ifecular ordered phases and expanded it in terms of the order
a sharp cusp. In 1974 Stralgy2] presented a generalization parameters characterizing the structure of the phase and the
of the Maier-Saupe theory for biaxial particles. He identifiedmolecular correlation function of an effective isotropic liquid
the four main order parameters necessary to describe an di21]. Next they derived expressions for the 12 elastic con-
dered phase of biaxial molecules. stants of a biaxial nematic phak®2]. The expressions were
written in terms of order parameters and the structural pa-
rameters that involve the generalized spherical-harmonic co-
*Electronic address: kapanow@izis.if.uj.edu.pl efficients of the direct pair correlation function of an effec-
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tive isotropic liquid. The authors tried to estimate the relative Rs, = sindsing,
magnitudes of these constants using a reasonable guess for
the values of order and structural parameters. We postpone R3,= COSH.

the discussion of their results until Sec. VI.
Among problems discussed in omitted papers we wouldrhe jdeal phase is described y(r)=6(r)=y(r)=0 for
like to mention a Monte Carlo study of a biaxial lattice al t
model [23,24], chiral biaxial liquid crystals[25,26], and '
phase diagrams of binary mixtures of biaxial nematogens o
[27]. B. Distortion free energy

Our paper is organized as follows. In Sec. Il we present a Let us callF4 the free energy due to the distortion of the
phenomenological continuum theory of nematic liquid crys-jocal frame (,M,N). A general form of its density 4(r)
tals and define basic deformations that allow us to extract alyas derived in Ref[17] in the case of small distortions. It
elastic constants from the distortion free energy. In Sec. llhas the form
we describe a statistical theory of a nematic phase and define
the microscopic distortion free energy. Then, in Sec. IV we -
derive general expressions for elastic constants of biaxial and fa(r)=ki;Djj + §Kiikl Dij D+ ELiikSiik : ()
uniaxial nematic liquid crystals. Exemplary calculations of
the values of elastic constants for a simple model are prewherek;; ,Kijx ,Lijx are elastic constants,
sented in Sec. V. Some comments on the theory presented
are given in Sec. VI. 1
Dij =3 €iRiaResdaRip.
IIl. PHENOMENOLOGICAL APPROACH

A. Description of a phase Sijk = Sjik = da(RiaDjk + RjaDik),

In this section we will describe nematic liquid crystals Si=S;i=0,(RigzR .~ Ri,d5Ri 5)
. . . i i a\ TN BYBNRja ia”BIRB/
from a phenomenological point of viepd7]. We assume
that at every poinf inside a considered phase we can define Sij = (€kim€ijn — €1im €kjn) DimDkn
three orthonormal vectorgL (r),M(r),N(r)) that reflect
some properties of this phase. In the case of a biaxial phase daRia=—€jkDjx, (6)

they determine the directions of its twofold axes of symme- . . .
S e . ande; is an element of antisymmetric tengave set up the
try. The vectors I,M,N) create the local frame, which can

. conventione;,3= +1). The elastic constants satisfy the sym-
be expressed by means of a space-fixed reference fra”ﬂﬁetry relatiolrzlgs ) fy y
(&x.€y,6,) as

. R . R R R Kijki = Kiij » (7)
L:Rlaea, M :Rzaea, N:Rgaea, (1)
. . Lijk=Ljik - (8
where the matrix element®,, (i=1,2,3 ande=x,y,z) sat-

isfy the conditions In general, the linear first-order terms wikiy give 6 bulk

and 3 surface termsi(R;,); the quadratic first-order terms

RiaRja=dij @ with Kijii give 39 bulk and 6 surface terms§(); the terms
R R.—8 3) with L;; give 18 surface terms[,). The total ngmbers of
ialfip™ Cap - bulk and surface terms are 45 and 27, respectively.

Let us briefly recall how the number of independent elas-
ic constants have to be determined with the help of symme-

requirements. The different cases of symmetry can be
scribed as the orthogonal transformation with the matrix
elementsT;; (i,j=1,2,3). This transformation changes the
local frame into the new one

Relations(2) and(3) express the orthogonality and the com-
pleteness of the local frame. Note that repeated indices impl
summation. The matrix elements can be expressed in ter d%/

of the three Euler angles(r), 6(r), and y(r),

R1x= COSACOSHCOS)— SingSsing, (4)

R1y= cosfsingcos)+ cospsing, Ria=TijRja- ©

The distortion free energy density may be expressed in terms

Ry,= —sinfcosy, of new variables with new(primed elastic constants. As
. . elastic constants do not change under symmetry operations,
Rax= — cosicospsing — singcosy, we can identify the independent elastic constants.

Ryy= — cosgsingsing+ cospcosy, C. Biaxial phase
R,,=sin#siny, Let us assume that a considered phase Hag,ssymme-

try group. Then the distortion free-energy density has the
R3x=sinfcosp, form
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1 2 1 2 1 2
fa=5K111:(D19)"+ 5K1214D19) "+ 5K1314D13)

1 2, 1 2, 1 2
+§K2121(D21) +§K2222(D22) +§K2324D23)

1 2, 1 2, 1 2
+§K3131(D31) +§K3231D32) +§K3333(D33)

+K112D 11D 20+ K113 11D 331 KopzdD 2D 33
+ K220 12D 21+ K1331D 13D 31+ K330 23D 35+ L 1255123

+ L 23155311 L315S310- (10

The terms withKj;,, give 12 bulk and 3 surface terms
(S11,552,S39), Whereas the terms with;;, give 3 surface
terms S123,5531,S319) . The total numbers of bulk and sur-
face terms are 12 and 6, respectively.

For the sake of future discussion we will rewrite here the
distortion free-energy density of a biaxial phase from the

A. KAPANOWSKI 55

(10). We write the implicit definitions of the new indepen-
dent elastic constant§ (s=1, ...,9,

K3333=4 Ksg,
K315~ Kogos= K7,
K3131= K323~ K3,
K1331= K233~ Kg,
K 11357 K2233= Ko+ 2 Kg—Kg,
L123=0, (13

1
Logi= — L312=§K5,

K1111= Ko2oo= Ko+ Kg+ Ky,

K217 K127 Ky,

paper of Saupgl4] using the notatior{6)

s 1 2, 1 2, 1 2

deEKaa(Dll) +§Kbb(D22) +§ch(D33)
1 2, 1 2, 1 2
+§Kab(D13) +§Kac(D12) +§Kba(D23)

1 2 1 2 1 2
+ EKbc(DZﬂ + EKca(DSZ) + Ech(D:ﬂ)
- CabD12D21_ CbcD23D 327 CcaD 13D31+ kO,asll

+KopSpot Ko cSss- (11

The relations among the elastic constants from EH®.and
(12) are

K111 Kaa,  Ki127= = 2Kog,
Ki2177=Kac,  Kiizs= —2Kop,
Kiz13=Kap,  Kazsz= —2Kga,
K2121=Kpe,  Ki22:= = Capt2Kop,
K2227=Kpp,  Ki33:= = Ceat2Kop, (12)
K2325=Kpa,  Kazzz™ = Cpet 2Koa,
K313:=Kep,  L123=0,
K323~ Kea, L231=0,
Ksz33=Kee,  L312=0.

D. Uniaxial phase

Let us assume that a considered phase possesbeg a
symmetry group. Let the axis be oriented along the axis of

symmetry. It is known thaD,, is a subgroup of thé.,,

K1127= Ko =Ky +Kg+ Ko,
K122:=Ks—Ky.

The distortion free-energy density has the form
1 = 1 - - 1 - -
fd=§K1(d|vN)2+ EKZ(N-rotN)2+ 5 Ka(NX rotN)?
1 1 1
ts5 K4Sz3+ 5 Ks(Sz31~ Sz12) + 5 Ke(S11t+S20)
1 I - - 1 -
+ §K7[(N-rotL)2+(N'r0tM)2]+ EKg[(L-rotL)2

. . 1 . L L
+(M~r0tM)2]+EKQ(N-rotN)[(LrotL)

+(M-rotM)]. (14)
Therefore, in the case of the uniaxial phase we have six bulk
(K4, Ky, K3, K7, Kg, andKg) and three surface term&g,

Ks, andKg). Note that usually authors use only terms from

K, to Ks, i.e., those that can be expressed by the velstor
only. But the remaining terms frorg to Kq are not ex-
cluded by the symmetry conditions and that is why we take
them into account.

E. Basic deformations of a biaxial phase

In the continuum theory of uniaxial nematic liquid crys-
tals three basic types of deformations, i.e., splay, twist, and
bend, appear, which extract from the distortion free energy
terms withK 4, K,, andKj, respectively. Thus each constant
K; must be positive; otherwise the undistorted nematic con-
formation would not correspond to a minimum of the free
energyFg.

Our aim in this section is to construct basic deformations
proper for the continuum theory of biaxial nematic liquid

symmetry group. It is interesting to study how higher sym-crystals, where the distortion free-energy density is ex-
metry reduces the number of independent constants from Egressed by Eq(10). A biaxial phase has lower symmetry
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than a uniaxial one, so as a special case basic deformations R (0y,z+ 1le)
from the uniaxial continuum theory should appear. N= \/2:1/2:
The ideal conformation is defined as y*+(z+1le)
[(0):(1,0@, for Kyazs,
-0 P= (x+ 1/e,y,0)
M©=(0,1,0, (15 (x+ Le)2+y2’
(0) —
N©=(0,0,1. Vi (—y,x+1/e,0)
Let us define the operat@®(e, ¢), which is turning a given V(x+1e)*+y?
vector p around a unit vectoe with an angle¢. We can S
write N=N©:
O(6,¢)p=(1—cosp)(p-E)e+(cosp)p+(sing)exp. O Kawan
(16) .-
L=L©O,
Now we define the basic deformations with the help of the
operatorO. The deformations can be divided into five groups N = (0y+1le,2)

and connected with relevant elastic constants. The first group Jy+1le)2+2%'
(twists) is, for Kq411,

e e o Ao ~(0) \3(0) ¥(0) N (0,—z,y+1le)
L,M,N)=0 L™ M™N = T
(L,M,N)=0(ey,ex)(L™,M™,N™), yrlel+z
for Kyss,
2222 and forKgsso,
M N = O a ~(0) n7(0) Nj(O
(LM LN) =08 ey) (LM N, (e ue02)
and forK z33, (x+1/e)>+ 22’
(LM,R)=0(&,,e(LOMONO).  (17) Ni=NI©),
The second grougsplays and bendiss, for K515, o (—2,0x+1/€) .
o (2+1e0-x) Vix+Le)>+ 22
X“+ (z+1le)? The third group(modified twist$ is, for L,3,
M=M, (C,M,N) = O(6,, ex)(L®, M@, N©),
N (x,0,z+1/e) for Logy,
O+ (z+1/e)?’ e e e e e
(z+1le) (L,M,N) = O(&,,ey)(L@,M(© N(©),
for K
o Raais, and forLp,
. (y+1/e,—x,0) I - -
L= s, (L,M,N)=0(e,,ez)(L'Y M@ N©). (19
VXe+(y+1/e)
The fourth group(double twist$ is, for K415,
N = (x,y+ 1/e,0)
Wyt 1e? (L,M,N)=0(ey, ey)O(ey,ex)(L'?, M@ ,N©),
N=N©:- for K133,
for Ka1z1 (L,M,N)=0(e,,ex)O(e,,e2)(L@,M© N©),
L=LO© and forKy,s3,
. (0z+1le,—y) (L,M,N)=0(e,,e2)0(6,,ey) (L@, M@ ,N®). (20)
M: ¥ 1

W2+ (z+1/e)?’ The fifth group(double twist$ is, for K554,
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(L,M,N)=0((—e,+e))/V2,e(x—y)/2) LW=(0y,0, M®=(-y,00, N¥=(0,00;
X O((&,+€y)/ V2, e(x+y)/\2) for Ksyas,
X(LO,M@,N©@), L[H=(0,00, M®¥=(0,02), N¥=(0-20);
for K1331, and forK3232,
(I:,|\7I,IQ)=©((éx—éz)/\/§,e(—x+z)/\/§) E(1)=(O,O,Z), |\7|(1)=(0,O,Q, N(1)=(—Z,0,0).
U O - 24
XO((eX+eZ)/\/Ere(X—’_Z)/\/E)(L(O)!M(O)yN(O))y ( )
The third group is, folL 3,
and forKyss,,
L LW=(0x,0, M®=(-x0,0, NY=(0,0,0,
(L,M,N)=0((— &y +€,)/V2,e(y~2)/\2) (0.0 ( ) (0.00
A e for Loz,
X O((8,+6,)/2,e(y+2)/\2) ot
(1) — (1) (1) —
x (L MO NO), 21) L=(0,00, M®¥=(00y), N¥=(0,-y,0),
Inside the formulas for deformations we used a small param"zlnd forL sz,
eter e (1/e is a length. As this measure of a deformation (1) _ _ 5(1)_ (1) _
goes to zero, a considered conformation becomes the ideal L 00-2, M (000, N (2.00. (25)
one. The vectors of the local frame can be expanded into a
power series with respect g The fourth group is, foK 125,
C=LO+ LMt 2[@y.. -, [(1):(0’0'_ y), |\7I(1)=(0,0,X), N(l):(y’_x'o)’
M=MO+eM® + M@ +. - (22 for Kq133,
N=N©+eND+ eN@ ... LB=(020, M®=(-20x), N¥=(0,-x0),

Let us consider expansion f given by Eq.(10) with re-  and forKyzss,

spect toe. It is clear that the lowest orderis the second one - - .

(with €). These terms contain linear parts of the local frame ~ L'V=(0z,—y), M®W=(-z0,0, N®¥=(y,0,0.
with the exception of5 terms, but later they will apper to (26)
be unimportant. That is why we write below only linear parts
of the vectors for all deformations. The first group is, for

K111, LP=(00-x), MP=(00y), N¥=(x,-y,0),
LM=(0,00, M®=(0,0x), NY=(0,—x,0);

The fifth group is, forkK 5,1,

for Kq331,

for Kazzz [D=(0x0, NMY=(-x02), NV=(0,-z0),

E(l)z(o,o'_y)' M(l)z(oaoyga N(l)z(yaoyo)y and fOI’K2332,

and forKsags, [(D=(0y,~2), MP=(-y,00, NY=(z00.

[W=(020), MY=(-200, N©V=(000. @7
(23 One can calculate the distortion free energy from its density
The second group is, fdf 515, by
L®H=(0,0-x), M®=(0,00, N¥=(x,00; Fo= f drfq. (28)
for Kq313, ) i
Below we write the lowest order df, for all deformations
[W=(0,—x,0, M®Y=(x,0,0, NP=(0,00: labeled by the relevant elastic constants. The first group is,
for Kq111,
for Ka121, 1
N v 3 Fa=5Ki112€2V
L®=(0,0,0, M®=(00-y), NP=(0y,0); d e

for Kass, for Koz,
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1

Fd:§K222262V1 (29

and forKzzss,

F=1K 2y
d=5 333€ V-

The second group is, fdf515,

F=EK 2y
d= 5 1216V,

for Kysss,

Fa=5Kia1€?V,
for K151,

Fd:_K212152V1
for Kyas3,

Fa=5Kaz?V,
for K331,

Fd:_

2
K3131€°V,

and forKsss,,

1 2
Fa=5KapzeV. (30)

2
The third group is, fol 53,
1 2
FdIE(K1313+4|—123)€ Vv,
for Lysq,
1 2
FdIE(K2121+4|—231)6 Vv,
and forL gy,
1 2
FdZE(K3232+4|—312)5 V. (31

The fourth group is, foiK 155,

1 1
Fq= ( K110t > K111t > Koot Liog—Logi+ |—312) 2V,

for Kq133,

1 1
Fq= ( K133t > K111t > Kaszzz—Liogt Logit |—312) €2V,

7095

for Kooss,

1 1
Fg= ( Koozat 5 Koot 5 K3azzt Ligst Logi— |—312) V.
(32
The fifth group is, forkK 5,4,

1 1
Fq= ( Ki2o1F 5 K112t 5 Ko121t Loz~ |—312) €V,

for Kq331,

1 1
Fq= ( K1gart > Kig1at > Kaiart Liog— L23l) €V,

and forKyzs,,

1 1
Fq= ( Kagzot > Kagogt > Kaogo— Lozt |—312) €V.
(33

Note that only deformations from the first and the second
group extract one constant from the distortion free energy.
Deformations from remaining groups always give a new
constant together with previously found ones.

IIl. MICROSCOPIC APPROACH
A. Description of a system

In this section we focus on the microscopic analysis of
nematic liquid crystals. Let us consider a dilute gasNof
molecules contained in a volumé at temperaturel. We
assume that the molecules are rigid blocks with three trans-
lational and three rotational degrees of freedom. The state of

a molecule is described by a vector of positiBrand the
orientationR= (¢, 6,¢), where ¢, 6, and ¢ are the three
Euler angles. Letm, J,, Jy, andJ, denote the mass of a
molecule and the three moments of inertia, respectively. We
assume that the molecules interact via two-body short-range
forces that depend on the distance between the molecules
and their orientationsp ;, gives the potential energy of in-
teractions.

The free energy for our system can be derived in the
thermodynamic limit N—o,V—o ,N/V=const) from the
Born-Bogoliubov-Green-Kirkwood-Yvon hierarchj20]. It
is given by

ﬁF=fmnGummGuMQ—n

1
5| dnd@emed s, @

whereG(1)=G(r,,R;) is the one-particle distribution func-
tion with the normalization

f d(1)G(1)=N, (35)

d(1)=dr,dR;=dr d¢,d6;sindydis, f1,=exp(Bd,)—1
is the Mayer functiong=1/kgT, and
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tation of a molecule both by the three Euler angles and by
the set of the three orthonormal vectofsrg,n). In a space-

fixed reference framee( e, ,€,) we can express them just
The equilibrium distributionG minimizing the free energy |ike the vectors of the local frame),

(34) satisfies

h2 3
Ag= ( 2_5) (m3JnyJz) —12 (36)

[=R;,e,=1,€,,
In[G(l)AG]—f d(2)G(2)f,=const. (37)

I”FI RZaéa maéa!

In the case of the homogeneous phase the distribution
G(1) does not depend on the position of a molecule and we

can write G(1)=Go(R,). It is convenient to use a dimen- p,t how the matrix elemen®;,, do not depend on the posi-
sionless functiorf(R) =Go(R)V/N with the normalization  tjon, We can say that the orientation is described by the nine
elementsR;, instead of the three angles. It is clear that nine
f dRf(R)=1. (38)  is more than enough. Because of symmé{r) should de-
pend only on R,)?. Below we show that using the four

In Ref. [20] the influence of symmetry of molecules and a_elementsRlx, Riz, Ry andRs; we can express the remain-

nN=Rs,6,=NE,, (41)

phase onf(R) was discussed. We have to distinguish four'"d ON€s

different cases. Note that in our paper a biaxial phasel- (Ry)2=1— (Ru)?— (Ryy)2,
eculd has theD,;, symmetry group whereas a uniaxial phase y

(moleculg has theD.., symmetry group. (Ryp)2= 1 (Ry)— (Ray)?,

2_ 2 2 2 2
(i) If a biaxial phase is composed of biaxial molecules (Ray)“= (Ry,)“+ (Ry2)“+ (Ray) “+ (R3)— 1,

then f(R) can be expressed in terms of the invariants
FO(R).

(i) If a biaxial phase is composed of uniaxial molecules
then f(R) can be expressed in terms of the invariants
FO(R). Our four distinguished elements are still not independent be-

(iii) If a uniaxial phase is composed of biaxial moleculescause of the identity linking them,
then f(R) can be expressed in terms of the invariants
ngg(R) 2RllezR3xRBZ: 1- (Rlx)z_ (Rlz)z_ ( R3x)2_ ( RBZ)Z

(iv) If a uniaxial phase is composed of uniaxial molecules 2 5
then f(R) can be expressed in terms of the invariants (R1xRa2) "+ (RizRa) ™ (43)

FO(R)=P;(cos). It is not difficult to express one element in terms of the three
The definition and the main properties of the invariantsrem‘"‘ir,‘ing ones, bl,‘t _this leads to complicated formulas and,

Fﬂ) are recalled in Appendix A. more |mp0rta_ntly, it |s_not necessary. We should_only_glve
v the one possible functional dependence @) [and invari-

antsF)(R)] on four element®Ry,, Ry, Ray, andRg,. It

will not have to be the unique dependence. Note that during
First we recall the simplest case of a uniaxial phase comeomputations we should use only one fixed functional depen-

posed of uniaxial molecules. When the phase symmetry axigence.

coincides with the axis, the homogeneous distribution func-  Now we will find the functional dependence of the invari-

tion depends only on the cosinus of the angle between thants onR;,, R;,, Rs,, andR;, becausef(R) depends on

molecule symmetry axis and the phase symmetry gis  the invariants. We expect th&t!) could be a sum of terms

proportional to products

R (R1)%(R12)"(Rg0)*(R3,), (44)
wheren= (sinfcosp,sinbsing,cos) describes the orientation
of the molecule. For a distorted phase the following obserWherea, b, ¢, andd are non-negative even numbers. Apart
vation is often used: In a weakly distorted system, at anyrom this we expect thaF{) with j=2s—1 and j=2s
point, the local properties are still those of a homogeneoushould contain products wita+b+c+d<2s. We know
system; only the optical axis has been rotated. In terms of ththat for j=2s—1 (s>0) there are $—1)? invariants,

(R22)2: 1- (Rlz)z_(RSZ)Zv

(R3y)2:1_(R3x)2_(R3z)2- (42)

B. Distribution function for a distorted phase

Go(N)=Gy(cod) =Gy(n-€,), (39)

distribution function this means thfs] whereas folj = 2s (s=0) there are §+ 1)? invariants. Let us
. o compare the numbeN; of products witha+b+c+d=2s
G(r,n)=Gy(n-N(r)), (400 with the numbe; of F{) with j=2s—1 andj=2s:
whereN(r) is a director field. No=1, No=1, (45)

Let us consider the most complex case of a biaxial phase _
composed of biaxial molecules. We can describe the orien- N,=2X3X4/6=4, N;=4,
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N,=3X4x5/6=10, N,=12+32=10,
Na=4X5xX6/6=20, Ns=22+42=20,
N,=5X6xX7/6=35, N,=3%+52=34,

Ns=6X 7 X 8/6=56Ng=42+62=52,
Ns=(s+3)!/(s!3!),
Ne=(s—1)2+(s+1)2=2s2+2 for s>0.

Note that whens>3, Ny is greater thaﬂs. This can be

easily understood by keeping in mind the identig) link-
ing our four elements. For instance, fer-4 the product

p=(R;4R1,R34R3,)? can be expressed by means of others.

We have the same fors=5 and productsp(Ryy)?,
p(Rlz)za p(R3x)21 andp(R3z)2-
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where

>

QP(r,R)=T-LP(r),

(zp)(F,R)z i ﬁ(p)(r),

PrR)=n-LP(r),

QP(r,R)=n-NP)(r). (50)
Let us write the expansion @
62
G(€)=G(0)+€G'(0)+ = G"(0)+- -+, (51)

or, more accurately,

Now we are in a position to present the procedure to 4

determine the functional dependenceFdf) on Ry, Ry,,
Rsy, andRs,. First we choose the number of produtg)

equal toN, for anys. Next we look for coefficients of every

product in a space created by the invarigitie orthogonal-

ity of F{!) should be used We get products expressed in
terms of invariants. Finally, we revert these relations to ob-
tain invariants expressed in terms of products. Exemplary

results of this procedure are listed in Appendix B.

Let Q; (i=1,2,3,4) denote the arguments of the distribu-

tion Gy, i.e.,
QuR)=Ry,=1"¢,,
QxR)=Ry,=I"¢,,
Q3(R)=R3,=n-&,,
Q4(R)=R3,=n-e,. (46)

We know the functional dependenGg on Q; and we pos-

tulate that the distribution of the distorted ph&€,R) can
be written as

G(r,R)=Gy(Q1,Q,,Q3.Qq), (47)

but the reference frameé(,éy,éz) should be replaced with
the local frame(L(r),M(r),N(r)). Thus
Qu(r,.R)=T-L(r),

-

Qa(r,R)=T1-N(r),
Qs(r,R)=n-L(r),

Q.(r,R)=n-N(r). (48)

G(F,R>=GO<R>+eZl 3iGo(RIQV(r,R)

4
+e2, 3,Go(RIQ(r,R)
i=1

62

4
+5 2 39,Go(RIQV(FRIQH(TRI+O(e).

2 | ]
(52)
C. Distortion free energy
It is known in the literaturg6] that to obtain the distortion
free energyF4 one should substract a homogeneous part

Fo from the total free energl. It is important thaf is not
equal to the free energy of a homogeneous pliase

BF= [ d(1Go Ry I Go(Ry A1)

1
-5 ] dd@ o RIG R 63

It is not obvious what we should choose lag We pos-
tulate that

BFo= | dGING(IAGI-1)
1 N .
- ZJ d(1)d(2)G(rq,R1)G(ry,Ry)fg;

1 - -
- Zf d(1)d(2)G(r2,R1)G(r2,R2)f1, (54

and

We assume that the vectors of the local frame can be ex-

panded into a power series with respect to the paraneter

(similary to the phenomenological approactWe can write

Q=Q”+eQi" +e2 Qi+, (49

BF4=BF—BF,. (59

This is a generalization of the expression for uniaxial nem-
atic liquid crystalg 5].
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We substitute the expansi@s2) into the deformation free

A. KAPANOWSKI 55

- 1
energy (55). When we make use of various identities that BFd:f deddeUf12€2VZUg(Ulz—Wlx)(Uzz—sz)-

come from the normalizations @&, and vectors of the local

frame we get

l 4
BFa=7 f d(LA(T1ze" 2 9Go(R1)9;Go(Ry)
X[=2QM(r1,R)QM(r5,R) +QV(ry,Ry)

X Q{Y(F1,R) + QM (12, R)Q[V(F2. R+ O(”).
(56)

Let us substitute the basic deformatiof@8)—(27) into the

free energy(56). We denote
Ua: aleol a+ r93G0na y

Wa=&2G0|a+ (94Gona,. (57)

We write the distortion energies for all deformations. The

first group is, forkK 111,
-, 1,
IBFd: ded R2d uflzf VZUXleWZY’
for Kazoz,
- o1
BFq= | dRidRydufze VZuy(Ulz_Wlx)(UZZ_WZX)a
and forKssss,
- o1
BFd: deddeUflze VZUZU:LYUZY' (58)
The second group is, fdf515,

R 1
BF4= f dR,dR,duf 12€2VZ UZ(U1,— Wiy) (U= W),

for K13,
1

ﬁFd:j deddeGf12€2V4

uZU,, U,y
for Ka1o1,
o 2 1 2
BFd = d Rld de uf 12€ VZ unlyWZy y
for Kyzos,
0 2 1 2
ﬁFd: deddeUfle VZUyulyUZy,
for Kaya,
I
IBFd: ded de uflzf VZ UZW1yW2y y

and forKsss,,

(59

The third group is, folL 5,3,

L1
BFq= J dRydRoduf 1,62V 7 uzU 1, Uoy

for Loss,

1 2
—u leWZy ’

BFd:delddeGf12€2V4 y

and forLg;o,

- 1
BFa= f dRydRydUF 1562V 7 UZ (U 1,~ Way) (U, = Way).-
(60

The fourth group is, foK 155,
- 1o
BFq= | dRidRydufyze VZ{uy(Ulz_Wlx)(UZZ_WZX)
+ u>2<leW2y+ u><uy[ ( u 1z Wlx)WZy
+le(U2z_W2x)]}v
for Kyy33,
- Lo 2
BFd: ded deuflzf VZ[UXleW2y+ uzUlyUZy
- uxuz( u 1yW2y+ leU 2y)]a
and forK 33,
PN
BFq= | dRidRydufyze VZ{uy(Ulz_Wlx)(UZZ_WZX)

+ UgU 1yU 2y uyuz[U 1y(U22_ W2x)

+(U12_Wlx)U2y]}- (61)
The fifth group is, forK 5,1,
- o1
BFq= | dRidRyduf e VZ{UX(Ulz_Wlx)(UZZ_W2X)

+ uiwlyWZy + u><uy|: (U~ Wlx)WZy

+le(U21_W2x)]}v
for Kyaas,
o 2 1 2 2
BFd: ded deuflzf VZ[UXU]_yU2y+ UZW]_yWZy

- uxuz( u 1yW2y+ leU 2y)]a

and forK,33,,
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N 1
BFq= f dRq.d RZdelzez\/Z{ug(Ulz_Wlx)(UZZ_WZX)

+ uiulyUZy_ uyuz[U ly( UZZ_WZX)

+(U,— Wy, ) Uy I} (62

Note that we changed the variables

7099
1 -

BK 11277 ZJ dRydRduf Uy Uy [ (U1,— Wi, ) Way
+ le( u 2z~ W2X)]1

1 N
BKllsszzf dRdRyduf Uy u,[ — Uy Wo, =Wy Uy ],
(67)

-

o= =U=U,E,, Mo+ri=n=n.8, (63)

1 -
BKoo3z= Zf dRdRyduf juyu [ — Uy (Up,—Wa,)
and we integrated ovey becausd ;, does not depend on it.
- (Ulz_Wlx)UZy]-

IV. ELASTIC CONSTANTS The fifth group is

A. Biaxial phase composed of biaxial molecules

K1221= K112, Ky33:= K133,

In the previous sections we calculated the distortion free KassrKazss (69
energy from both macroscopic and microscopic points ofWe note that three constants vanished and three others ap-
view. Now we compare these expressions to obtain micropeared to be dependent. The total number of independent
scopic formulas for the elastic constants of the biaxial phaseonstants is equal to 12.

The first group is

B. Uniaxial phase composed of biaxial molecules

This phase is described by the distributib(R) that de-

pends on the invarians{)(R). There is no dependence on
the ¢ angle, thus

1 R
BK1111= Ef dR;dRd Uf12u)2<leW2y )

1 N
BK 2220~ EJ dRydRyduf 1,u5(U 1,— Wi, ) (U = Why),

(64)

(9160:(93GQ:0, Ua=0. (69)

The expressions for the elastic constants are

1 -
B K3333=§J ARy dR;dUf 17U, Uz ,8K1=% J dR;dR,dUf 1 u2W3, Wy | (70)
The second group is 1
1 BKy=> f dRydRydUf 1,U5 Wi, Wiy , (72)
BKi21~ EJ dR;dR,AUf 1,u%(U 1, — Wiy) (U= Way),

. BKo=p [ dRARAT AW, (72

BK1z13= EJ dRdRyduf 1,uZU 1yYay,
K4:%(K1+K2)- (73

1 -
K z—dedeuf UZW3, Wy, ,
AR 2 Py Ty Ty The remaining constants are equal to zero

1 R 2 K5: K6:K7:K8:K9:O. (74)
BKazas=5 | dRydRpdufyuyUsyUsy, . o
Note that formulag70)—(72) differ from the case of uniaxial
L molecules, but we have the same num{&rof independent
- constants.
BKz131= EJ dR,;dR,d Uf12U§W1yW2y :
C. Biaxial phase composed of uniaxial molecules

,BK3232=EJ dR;dR,d Uf 1u2(U 1,— Wi, ) (U, — Way). The phase _is de_scribed by the distrib_utit(rR) that de-
2 pends on the mvarlamE%(R). As there is no dependence

(65) on they angle one gets

The third group is 31Go=3,Go=0. (75

Lip3=Ly31=L31,=0. (66)  The formulas for the elastic constants are just like the ex-
pressiong64)—(68) for biaxial molecules, but we should use

The fourth group is the substitutions
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Ua,:(?:gGOna, Wa:&4G0na. (76)

D. Uniaxial phase composed of uniaxial molecules

A. KAPANOWSKI

This is the simplest case and we show that our model

recovers the famous formulas by Poniewierski and Stiki
with the direct correlation function replaced Hy,. The
phase is described by the invaria§)(R). There is no
dependence on eithef or ¢; thus

&1G0=&2G0=83G0=0, Ua:O. (77)

The formulas for the elastic constants are just like the ex-

pressiong70)—(74) for biaxial molecules, but we should use
the substitution

Wa=(?4G0na . (78)

V. EXEMPLARY CALCULATIONS

In this section, by means of the present general theory we
carry out analytical and numerical calculations for a rela-

tively simple model with the interaction energy of the form
®,(u/o) [7,28], whereu is the distance between molecules

(u=uA) and
o(Ry,Ry,A) = 0+ o4 [(A-np) 2+ (A-Np) 2]+ ap(Ny - Np)2
+ g (A T2+ (K- T,)2]+ oy(T1-T5)?

+as[(T1-0p)2+(T5-np)2]. (79)

The functiono is real and invariant under rotations and per-
mutation of molecules. Also the symmetry operations on

molecules from théD,,, symmetry group leaver invariant
[20].

There are a number of possibilities for the functional de-

pendence ofb,, on u/a. We give four examples, together
with a functionB¢(T*), defined as

BA(T*) = J:dxxan(x): J;dxxS{exq—ﬂcblxx)]—l},
(80

whereT* =1/8¢ is a dimensionless temperature ands a
depth of the potential energyi) the hard-core potential en-

ergy

® oy +o  for u/lo<1
= 1
WWohe=| g o ulo>1, 1)
. -1
B(T )Hc=m=const; (82
(i) the soft-core potential energy
O fu/o)sc=€esc(olu)™, (83
-1 [m—s—1)( 1 )\TVm
* - 7| — || — * ).
Bs(T*)sc=g77 - )(T*) exp(1/T*);
(84)

(iii ) the square-well potential energy

55
+o  for u/lo<1
(D].Z(U/O-)SW: — €Esw fOI’ 1<U/O’<RSW (85)
O fOI’ U/O'>st,
1 s+1
By(T*)sw= g il XA LT*) — 1](RgY — 1)~ 1};
(86)
and (iv) the Lennard-Jones m-n potential energy
DU/ o) y=4e [ (ofu)"—(alu)"], 87
-1 ®© 1/ 4 [p(m=n)+s+1]/m
* — —_ —
BS(T )LJ_S+1p=O pl(T*)
pn+tm—s—1
—_— (88)
1 2 1n/4 [p(m=n)+m-n+st1)/m
St15% P! m( T_*)
pn+n—s—1
X[ ———— (89
m

The functionB4(T*) is of great importance, i.e., to the prob-
lem of the existence of the ordered phase.

We rewrite the general equatidB7) for the distribution
function in the case of a homogeneous phase. Let us define

K(Rl,R2)=f dA(aloy)?, (90)

A=B,(T*)(oaN/V). (91
The kernelK and the distribution functiorf can be ex-
pressed in terms of invarianE'! (see Appendix A

[35]

K(RO)= > KUMFI(R), (92
01=1a1

[35]

Inf(R)= > SFI(R). (93
[11=[1]

Note that foro given by Eq.(79) both sums(92) and (93)
arefinite series. Thus the distribution function of the homo-
geneous phase is fully described by 35 coefficigits Let

us define order parameters as

<F“1>Ef dRf(R)FI'(R). (94)

The set of coefficientsiw we derive from the equations
i — i (g() i
SJM—)\EPZ KL(F.) for j>0, (95

(FE¥)=1 (the normalization condition  (96)
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Note that there is a mistake in these equations in 2&f. (0] 1 . - "

Now we move to the elastic constants. We can expand the A3232=§f dRydR,dA(0/0p) A (U, —Wiy)
distribution functionf in an infinite series with respect to

invariantsF{)), x (U] —wi),
. 1
f(R)= 2 E (FIDFD(RI(2)+1)/872.  (97) ALY Ef dRydR,dA (07 07g) %A A (U] - WEHWET
When we insert the serig®7) into definitions of W, and -1 o
U, we get 97 Al =— J dRydR,dA (07 07g) %A A UNIWEYT
-1 "
Wa:(N/V)[EI]: (FUTywt! A[z';I;QZTJ dRydR,dA (a/0g)°A A (U] —WIH UL
(101)
U,=(N/V) > (FIyull, (98)  We would like to stress that alll?! can be calculated
[

analytically. As there are 12 different elastic constants with

_ . o 120x 120= 14 400 functionsAl"1Y1, which have an eightfold
We can write all elastic constants fasite sums of the form integration, itis a very time Consuming task. In order to get

some estimation of the values of the elastic constants we

[121] [121] . A ;
Kinen S SONTEINNG 99) perfqrmgd calculations numerlcally with a rather rough ap-
ijkl ’7“]:[2] (=12 ( ikl o proximation that the most important are two order param-
eters(F) and(F$2)). We assumed the square-well poten-
where tial energy of interactions witlRg,=2 and a density equal
to 1/5 of close-packed density. We show how to calculate the
7= (el o) T* B4(T*)(08N/V)2 (100 close-packed density. The mutually excluded voluvheof

two molecules with fixed orientatior®; andR, is equal to
and A"l are functions of parametets . They are defined

as follows: for Ve(R;,Ry) = f dAo®/3=K(Ry,Ry)03/3. (102
1 .
Al =2 f dRyd deA(a/ao)E’AzW“]W[sz] , We assume that the volume of a molecule is equal to
L ) Vo= Ve(0,0)/8= K(o,0)03/24=; % Kl o0/24.
Ag';[ng:E f dRydRdA (07 0g) SAZ(ULT - W) (103
x (U —whly, We usedvV/N=5V,,, . According to Ref[20], we assumed

that molecules are similar to ellipsoids with three different
1 axes (&) X (2b) X (2c), wherea<b<c. Then, by means of
== f dR,dR,dA (/o) 5A2 U['] the excluded volume methd@0] we get

o9p=2b, o;=c—b, oz3=a—-b, oy,=0,=05=0.

(104
Al =2 f dRydRdA (07 0g) *A (U] — W)
In our calculations we applied=3b=29a. Note thato de-
% (Ulsz] [J]) termines the length scale, whereag, determines the energy

scale. The elastic constants can be expressed,jfo.
1 In our system, on decreasing the temperature we meet the
A[l'%[lg:_f dR,d deg(g/go)SAiull'y]U[szl ' first-order transition to the uniaxial nematic phase at
2 T* =0.64 and the second-order transition to the biaxial nem-
atic phase al* =0.32[20]. The temperature dependence of

(113 ST the two order parametex$=2)) and (F(2)) is presented in
Ablsl=5 f dRydR,dA (o/0r) AJWEIWE], Fig. 1. The order paraméte??were ﬁsé?to calculate the tem-
perature dependence of the elastic constants shown in Fig. 2.
In the nematic phase generally three independent con-
ARII == fdeddeA(o/ao)5A2U[']U2y, stants are presenk ;=K =K1, Kz=Kaia=Kanso,

and K,=K;11:=K»5,,. We plotted also the negative con-
stantK 115,, Which in this phase is equal t&¢—K)/2. Note

1 - R - :
I = R 54 20/ a1 that the equalityk ;=K is accidental and results from sim-
Astsi 2[ ARy dRpdA (ol 70) Az Way Way plifying the assumption that we take into account only two
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VI. CONCLUSION

In this paper we derived the microscopic formulas for
elastic constants of biaxial nematic liquid crystals. In order
to calculate the values of elastic constants one needs the
S one-particle distribution function and the potential energy of
molecular interactions. The theory was developed for rigid
molecules interacting via two-body short-range forces. We
showed that the potential energy of the fodn(r/o) is
extremely useful for calculations. It allows us to express the
elastic constants as faite series in terms of the order pa-

v rameters. Apart from that the potential ener@y (r/o)
makes the role of the temperature more visible. The tempera-
ture determines the order parameters via the function
01025 03 0355 04 045 05 055 06 065 BZ(T_*) in X\ [Eq. (9_1)] and it has a direct influence on the
elastic constants via the functi@®dy(T*) in 7 [Eq. (100].

FIG. 1. Temperature dependence of the order parameters Our theory was applied to a system of molecules similar

S=(F2y andV=(F2,) (we use the Straley notatipril denotes the to eIIipSOid; and. th.e temper_atu_re dependence of the elastic
dimensionless temperatufe . constants in uniaxial and biaxial nematics phase was ob-

tained.
@ @) ] ] We sum up our results by a comparison to the paper by
order parameter¢Fgg) and (F37). Typically, for rodlike  ginghet al. [22] because both works have a lot in common.

molecules we get inequalitigs;>K,>Ko. We will list predictions of Singtet al. using our notation and
In the biaxial phase we have 12 independent constant§yill add our comments.

K splits intoK 51, and K151 (K1212> K19, K3 splits into

K232 and Ksar (Kszsz>Kaazd), Ky splits into Kyp, and . . "y . o

K111 (Kogps> K111, andK 1., becomes a new independent (i) Durlng the transition from a unlax_|al t_o a biaxial phase
constant. Other new independent constants are four positiJé1 SPIits into Kyp1, and Kzg1, K splits into K3, and

K 1135> K1315> K 305> K 3333 and one negativék ,ps3. Note K3131_, K, splits intoK 55, and K471, andK 45, becomes a
thatK 1315, Kzsps andK 5555 are about an order of magnitude NeW independent constant.

smaller tharK;35 but they have a similar temperature de- (i) Seven constants, VizKiz15, Kaip1, Kazzz, Kaas,
pendence. We noticed that in the biaxial phase in the neigH 2222, K1111, andKyiz,, have a nearly equal value and are
borhood of the transition point four constants reveal unusua®f the order of the values found in a uniaxial phase.
behavior.Ksya;, Koipr, and Kypq; decreaseon decreasing (i) Three constants, VizKssss, Kiais, andKogys, are
the temperature ankl,;,, increaseson decreasing the tem- three or four orders of magnitude smaller than the value of

perature. Unfortunately, it is not clearly visible in the picture. the constants found in a uniaxial phase. _
(iv) K133 and Kyyg3 are about one order of magnitude

smaller tharK ;15,.
(V) K1125<0, K1135>0, andK;»33<0.
3sp \Kii Kion7Kiaro (i) If (F)=(F)=0 (and also higher-order param-
K3131=K2121 eterg then K1: Ks, K3232: K1212, and K3131: K2121.
K} 1337K 3157K 505K 335570

All predictions are confirmed by our results excejit)
and (iv). It is easy to find the origin. Singht al. assumed
that(F2))/(F{3)~0.01, but it is true only near the transition
point. For low temperatures o¢F‘3) and (F{) have the
same order of magnitude.

We would like to stress that contrary to Singhal., we
obtained a full temperature dependence of the elastic con-
-101 Kz stants, not only an estimation of their values. We could also
establish the relations between split constants in our model.

Our result(68) implies that there are the following rela-

. tions among the elastic constants from the paper of Saupe
FIG. 2. Temperature dependence of the elastic constants. In ti[q4]:

uniaxial nematic phasébetweenT*=0.64 and T*=0.32) we
have K;=Ki»n;=Ksp; equal to K3z=Kg3=Kss, and
K2: Kllll: K2222. In addition we haVé(llzzz(Kzf Kl)/Z In the
biaxial nematic phasébelow T* =0.32) K, K3, andK, split into
two constants and,;,, becomes an independent constant. ApartAS far as we know, these relations have not been presented in
from that, one negative K9 and four positive the literature. In the case of the uniaxial phase they give the
(K1135> K 1315~ K s3> Kagsd constants appeafl. denotes the di- Cauchy relation from the paper of Nehring and Sal®e
mensionless temperatuie . [Eqg. (73) in our notation.

o
i
&

-150.25 03 0.35 04 O,itS 0.5 0.55 0.6 0.65

Cap= 4k0,c v Cpc=4 kO,a » Cea=4 kO,b . (105)
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The uniaxial version of the present theory was successfuly
applied 15 years agl7]. We are convinced that the biaxial
version can be a useful tool for experimenters dealing with
biaxial nematic liquid crystals. In the future we expect ex-
perimental data for the elastic constants of biaxial nemato-

gens as, according to Kini and Chandrasekhar, experiments

are feasibld 18] and the number of known biaxial materials
increased29].
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APPENDIX A

Let us recall the main properties of the invariaﬁtg)v,
which describe biaxial and uniaxial molecules in biaxial and
uniaxial phases.

(i) The definition is

2+8,0+ 00,
F(j,),(R)Z — (_1)1'(0*;))/2
# \/E p,zrzil
(i)
XD u.o(R), (A1)
where j is a non-negative integer. If is even, then

Os=u<j and Osvsj. If j is odd, then Zu<j and
2<vs=j. FunctionsD{))(R) are standard rotation matrix el-
ements.

(ii) The invariants are real functions.

(iii) Let R"Y=(— 4, — 6,— ¢) denote the rotation inverse
to R=(¢,0,¢). Then
FORH=FI(R). (A2)
(iv) For the zero rotation we have
FU(0)=4,, (A3)

(v) The invariants satisfy the orthogonality relations

f dRFI(RFN(R) = 8,8,,8,,87% (2] +1). (A4)
More generally, we can write
f dRFD(RFM(R;'R)

= SFU(R)FU(0)87%/ (2 +1). (A5)

(vi) For a givenj=2s and j=2s+1 there are §+1)
ands? invariants, respectively.

(vii) In order to get a more transparent form of certain
formulas we introduce alternative labeling of invariants. We
replace indicators j(u,v) with an indicator[1], wherel
runs from 1 by 1 to infinity. For two indicators
[11=(j,m,v) and[J]=(k,p,0) we can write thafl]<[J]
only when j<k, or whenj=k and u<p, or whenj=Kk,
u=p, andv<o. We have, for example,
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[1]=(0,0,0,
[2]=(2,0,0,
[3]=(2,0,2,
[4]1=(2,2,0,
[5]=(2,2,2,
[6]=(3,2,2,
[71-[15] for (4u,v),
[16]—-[19] for (5u,v),
[20]—-[35] for (6,u,v),
[36]—[44] for (7,u,v),
[45]—-[69] for (8,u,v),
[70]-[85] for (9.u,v),
[86]—[121] for (10u,v). (AB)
APPENDIX B

We list the invariants=!}) expressed in terms of products
(Ri)*(R1)"(R3)%(Rs,)? for j=0, 2, 3, and 4 as an exem-
plary result of the procedure described in Sec. Il D:

Fg-1.
(2)_1 2
Foo —5[_1+3(R3z) 1,

V3

F6y == 11+ (Re)*+2(Ry,)%],

V3

Fi =511+ (Rep)+2(Ra0)?],

<2>——[ 3+ (Ra,)2+2 (Ry) %+ 2(Ray) 2+ 4(Ryy) 2,

59 = — (Rgp) %+ (Ryp) 2+ (Ra,)?— (Ryy) 2+ 3(Ry) 2(Ray)?

—3(Ry,)4(R30)%,
<4>=—[3 30(Rg,)*+ 35(Ray) ],

V5

F62 =4 11-8(Rs)*~ 2(R1p)*+ 7(Ra)*
+14(Ry,)*(Ra)°],

(4)— \/3—5

Fo4 _?[1_ 2(R3Z)2_ 8(R12)2+ (R3z)4

+8(Ry,)%(Rap)*+8(Ryp)*],
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V5
4
+14(R5,)*(Rs,)?],

F58=——[1—8(Rs,)2—2(Rgy) %+ 7(Ray)*

11 7
F§3 =5~ 10(Rs)?~ 6(Rg)*+ 5 (Rap) *+ 7(Rax) *(Ray)?

—6(R1,)%+7(R12)%(R3,)*~ 5(Ryy)?+ 7(R1,)*(Ray)?
+7(Ri)*(Ray)?,

N
4
—16(R1,)*+8(R12)*(R3,) = 8(Ry)?
+8(R12)*(Ray)*+8(R1)*(R3) >+ 8(Ryp)*
+16(R1)*(R1,)%],

F5% =—17—8(Rap)2— 6(Ray) 2+ (Rp)*+ 2(Ray) %(Rs,)?

A. KAPANOWSKI
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F2‘8=%3—5'[1—2<R32)2—8<R3x)2+<R32)4+ 8(Ra)*(Rsy)?
+8(Ra0)],
Fa?:%?—s(Rgz>2—16(R3x>2+(R32)4+ 8(Ra0)*(Ray)?
= 6(R12)*+ 2(R12)(Ra)*~ 8(R1) *+ B(R12) X(Ra)”
+8(R1x)%(Rax)*+ 8(Ra) “+ 16(Ry) *(Ra) ],
Fa?:%?’— ?(sz— 5(Rax)*+ %(R32>4+(RSX>Z(R32>2

—5(Ry2)?+(R1,)%(Rg,)*— 12(Ry,)*+ (Rgy)*
+4(R1,)%(Rayx)?+ 4(R1,)%(R3,) %+ (Ry,)*
+8(Ry,)4(R1,)?+8(R1,)%(Rax) >+ 8(Ry,)*.
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