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Statistical theory of elastic constants of biaxial nematic liquid crystals

A. Kapanowski*
Institute of Physics, Jagellonian University, ulica Reymonta 4, 30-059 Cracow, Poland
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Microscopic expressions for the elastic constants of liquid crystals composed of biaxial or uniaxial mol-
ecules are derived in the case of a weak anchoring, small distortions, and a small density. Both biaxial and
uniaxial phases are considered. The expressions involve the one-particle distribution function and the potential
energy of two-body short-range interactions. The theory was used to calculate the temperature dependence of
the elastic constants for a system of rigid molecules similar to elipsoids with three different axes.
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I. INTRODUCTION

The understanding of the elastic constants of liquid cr
tals is important for a number of reasons. In the first pla
they appear in the description of virtually all phenome
where the variation of the director is manipulated by exter
fields ~display devices! @1#. Second, they provide unusual
sensitive probes of the microscopic structure of the orde
state. Valuable information regarding the nature and imp
tance of various anisotropies of the intermolecular potent
and of the spatial and angular correlation functions can
derived from the study of the elastic constants. Knowled
of the elasticity of the liquid crystals is also needed in t
study of defects in them@2#. There are microscopic theorie
@3–8# that give working expressions for the elastic consta
of uniaxial nematic liquid crystals. Contrary to this, biaxi
nematic liquid crystals are poorly examined because t
require more complex theoretical description and are diffic
to obtain experimentally. In this paper we would like
present a statistical theory of the elastic constants of bia
nematic liquid crystals. To provide a context for our deriv
tions we remind the reader of the main results in this fie

In 1970 Freiser@9# generalized the Maier-Saupe theory
incorporating molecules with nonaxial quadrupole symme
in the interaction potential and predicted a phase transi
sequence from isotropic to uniaxial order and then to bia
order on cooling the sample. In 1972 Shin and Alben@10#
considered a generalization of Flory’s lattice model to d
scribe a fluid of rectangular platelike objects of any leng
and width. They found that plates that are neither very squ
nor very rodlike in shape may exist in a biaxial phase at h
pressure. On decreasing the pressure first a uniaxial p
and next an isotropic phase appear. In 1973 Alben@11# con-
sidered a simple Landau theory to study phase transition
a fluid of biaxial particles. His results suggest that the ph
diagram of such fluid exhibits a special critical point whe
two second-order critical lines meet a first-order boundary
a sharp cusp. In 1974 Straley@12# presented a generalizatio
of the Maier-Saupe theory for biaxial particles. He identifi
the four main order parameters necessary to describe a
dered phase of biaxial molecules.
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In 1980 Yu and Saupe observed experimentally the bi
ial phase in lyotropic systems@13#. The phenomenologica
theory of elastic constants and viscosity coefficients of bi
ial nematic liquid crystals was developed by Saupe in 19
@14#. It was based on a generalization of the concepts use
the Frank-Oseen theory for uniaxial nematics. The aut
introduced twelve bulk elastic constants~and three additiona
surface elastic constants!. Three of them were assigned t
twist deformations, six to bend deformations, and three
coupling between bend and twist deformations. In Sec.
we will present predictions of our model for the Saupe el
tic constants.

Brand and Pleiner presented hydrodynamics of biax
nematic liquid crystals and similarly to Saupe they show
that there are twelve bulk elastic constants and three sur
terms in the elastic energy@15,16#. In our opinion, the most
transparent derivation of the phenomenological elastic
ergy of biaxial nematic liquid crystals was given by Stallin
and Vertogen@17#. That is why we will use this paper as
basis for our considerations.

Kini and Chandrasekhar in 1989 discussed the feasib
of determining some of the twelve curvature elastic consta
of an orthorhombic nematic liquid crystal using Saupe’s co
tinuum theory. They studied the effects of external magne
and electric fields applied in different geometries@18#. In the
same year Mulder considered the isotropic-symme
breaking bifurcations occurring in a class of liquid-crys
models describing particles with the symmetry of rectangu
slabs@19#. His main result was the classification of the sym
metries of the bifurcating solutions to the equations desc
ing the stationary phases in terms of eigenvalues of the
fective pair interactions. He also introduced the set
symmetry-adapted functions, but it was not complete@20#.

Finally, we would like to mention the most importan
work by Singhet al.They used a density-functional theory
derive an expression for the distorsion free energy of m
lecular ordered phases and expanded it in terms of the o
parameters characterizing the structure of the phase and
molecular correlation function of an effective isotropic liqu
@21#. Next they derived expressions for the 12 elastic co
stants of a biaxial nematic phase@22#. The expressions were
written in terms of order parameters and the structural
rameters that involve the generalized spherical-harmonic
efficients of the direct pair correlation function of an effe
7090 © 1997 The American Physical Society
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55 7091STATISTICAL THEORY OF ELASTIC CONSTANTS OF . . .
tive isotropic liquid. The authors tried to estimate the relat
magnitudes of these constants using a reasonable gues
the values of order and structural parameters. We postp
the discussion of their results until Sec. VI.

Among problems discussed in omitted papers we wo
like to mention a Monte Carlo study of a biaxial lattic
model @23,24#, chiral biaxial liquid crystals@25,26#, and
phase diagrams of binary mixtures of biaxial nematog
@27#.

Our paper is organized as follows. In Sec. II we presen
phenomenological continuum theory of nematic liquid cry
tals and define basic deformations that allow us to extrac
elastic constants from the distortion free energy. In Sec.
we describe a statistical theory of a nematic phase and de
the microscopic distortion free energy. Then, in Sec. IV
derive general expressions for elastic constants of biaxial
uniaxial nematic liquid crystals. Exemplary calculations
the values of elastic constants for a simple model are
sented in Sec. V. Some comments on the theory prese
are given in Sec. VI.

II. PHENOMENOLOGICAL APPROACH

A. Description of a phase

In this section we will describe nematic liquid crysta
from a phenomenological point of view@17#. We assume
that at every pointrW inside a considered phase we can defi
three orthonormal vectors„LW (rW),MW (rW),NW (rW)… that reflect
some properties of this phase. In the case of a biaxial ph
they determine the directions of its twofold axes of symm
try. The vectors (LW ,MW ,NW ) create the local frame, which ca
be expressed by means of a space-fixed reference fr
(eW x ,eW y ,eW z) as

LW 5R1aeWa , MW 5R2aeWa , NW 5R3aeWa , ~1!

where the matrix elementsRia ( i51,2,3 anda5x,y,z) sat-
isfy the conditions

RiaRja5d i j , ~2!

RiaRib5dab . ~3!

Relations~2! and~3! express the orthogonality and the com
pleteness of the local frame. Note that repeated indices im
summation. The matrix elements can be expressed in te
of the three Euler anglesf(rW), u(rW), andc(rW),

R1x5cosucosfcosc2sinfsinc, ~4!

R1y5cosusinfcosc1cosfsinc,

R1z52sinucosc,

R2x52cosucosfsinc2sinfcosc,

R2y52cosusinfsinc1cosfcosc,

R2z5sinusinc,

R3x5sinucosf,
e
for
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R3y5sinusinf,

R3z5cosu.

The ideal phase is described byf(rW)5u(rW)5c(rW)50 for
all rW.

B. Distortion free energy

Let us callFd the free energy due to the distortion of th
local frame (LW ,MW ,NW ). A general form of its densityf d(rW)
was derived in Ref.@17# in the case of small distortions. I
has the form

f d~rW !5ki jDi j1
1

2
Ki jklDi jDkl1

1

2
Li jkSi jk , ~5!

whereki j ,Ki jkl ,Li jk are elastic constants,

Di j5
1

2
e jklRiaRkb]aRlb ,

Si jk5Sjik5]a~RiaDjk1RjaDik!,

Si j5Sji5]a~Rib]bRja2Ria]bRjb!,

Si j5~ekime l jn2e l imek jn!DlmDkn ,

]aRia52e i jkD jk , ~6!

ande i jk is an element of antisymmetric tensor~we set up the
conventione123511). The elastic constants satisfy the sym
metry relations

Ki jkl5Kkli j , ~7!

Li jk5L jik . ~8!

In general, the linear first-order terms withki j give 6 bulk
and 3 surface terms (]aRia); the quadratic first-order term
with Ki jkl give 39 bulk and 6 surface terms (Si j ); the terms
with Li jk give 18 surface terms (Si jk). The total numbers of
bulk and surface terms are 45 and 27, respectively.

Let us briefly recall how the number of independent el
tic constants have to be determined with the help of symm
try requirements. The different cases of symmetry can
described as the orthogonal transformation with the ma
elementsTi j ( i , j51,2,3). This transformation changes th
local frame into the new one

Ria8 5Ti jRja . ~9!

The distortion free energy density may be expressed in te
of new variables with new~primed! elastic constants. As
elastic constants do not change under symmetry operati
we can identify the independent elastic constants.

C. Biaxial phase

Let us assume that a considered phase has aD2h symme-
try group. Then the distortion free-energy density has
form
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f d5
1

2
K1111~D11!

21
1

2
K1212~D12!

21
1

2
K1313~D13!

2

1
1

2
K2121~D21!

21
1

2
K2222~D22!

21
1

2
K2323~D23!

2

1
1

2
K3131~D31!

21
1

2
K3232~D32!

21
1

2
K3333~D33!

2

1K1122D11D221K1133D11D331K2233D22D33

1K1221D12D211K1331D13D311K2332D23D321L123S123

1L231S2311L312S312. ~10!

The terms withKi jkl give 12 bulk and 3 surface term
(S11,S22,S33), whereas the terms withLi jk give 3 surface
terms (S123,S231,S312). The total numbers of bulk and su
face terms are 12 and 6, respectively.

For the sake of future discussion we will rewrite here t
distortion free-energy density of a biaxial phase from
paper of Saupe@14# using the notation~6!

f d
S5

1

2
Kaa~D11!

21
1

2
Kbb~D22!

21
1

2
Kcc~D33!

2

1
1

2
Kab~D13!

21
1

2
Kac~D12!

21
1

2
Kba~D23!

2

1
1

2
Kbc~D21!

21
1

2
Kca~D32!

21
1

2
Kcb~D31!

2

2CabD12D212CbcD23D322CcaD13D311k0,aS11

1k0,bS221k0,cS33. ~11!

The relations among the elastic constants from Eqs.~10! and
~11! are

K11115Kaa , K1122522k0,c ,

K12125Kac , K1133522k0,b ,

K13135Kab , K2233522k0,a ,

K21215Kbc , K122152Cab12k0,c ,

K22225Kbb , K133152Cca12k0,b , ~12!

K23235Kba , K233252Cbc12k0,a ,

K31315Kcb , L12350,

K32325Kca , L23150,

K33335Kcc , L31250.

D. Uniaxial phase

Let us assume that a considered phase possesses aD`h
symmetry group. Let thez axis be oriented along the axis o
symmetry. It is known thatD2h is a subgroup of theD`h
symmetry group. It is interesting to study how higher sy
metry reduces the number of independent constants from
e

-
q.

~10!. We write the implicit definitions of the new indepen
dent elastic constantsKs ~s51, . . . ,9!,

K333354K8 ,

K13135K23235K7 ,

K31315K32325K3 ,

K13315K23325K6 ,

K11335K22335K912K82K6 ,

L12350, ~13!

L23152L3125
1

2
K5 ,

K11115K22225K21K81K9 ,

K12125K21215K1 ,

K11225K22K41K81K9 ,

K12215K42K1 .

The distortion free-energy density has the form

f d5
1

2
K1~divNW !21

1

2
K2~NW •rotNW !21

1

2
K3~NW 3rotNW !2

1
1

2
K4S331

1

2
K5~S2312S312!1

1

2
K6~S111S22!

1
1

2
K7@~NW •rotLW !21~NW •rotMW !2#1

1

2
K8@~LW •rotLW !2

1~MW •rotMW !2#1
1

2
K9~NW •rotNW !@~LW •rotLW !

1~MW •rotMW !#. ~14!

Therefore, in the case of the uniaxial phase we have six b
(K1, K2, K3, K7, K8, andK9) and three surface terms (K4,
K5, andK6). Note that usually authors use only terms fro
K1 to K5, i.e., those that can be expressed by the vectoNW
only. But the remaining terms fromK6 to K9 are not ex-
cluded by the symmetry conditions and that is why we ta
them into account.

E. Basic deformations of a biaxial phase

In the continuum theory of uniaxial nematic liquid cry
tals three basic types of deformations, i.e., splay, twist,
bend, appear, which extract from the distortion free ene
terms withK1, K2, andK3, respectively. Thus each consta
Ki must be positive; otherwise the undistorted nematic c
formation would not correspond to a minimum of the fr
energyFd .

Our aim in this section is to construct basic deformatio
proper for the continuum theory of biaxial nematic liqu
crystals, where the distortion free-energy density is
pressed by Eq.~10!. A biaxial phase has lower symmetr



tio

th
ps
o

55 7093STATISTICAL THEORY OF ELASTIC CONSTANTS OF . . .
than a uniaxial one, so as a special case basic deforma
from the uniaxial continuum theory should appear.

The ideal conformation is defined as

LW ~0!5~1,0,0!,

MW ~0!5~0,1,0!, ~15!

NW ~0!5~0,0,1!.

Let us define the operatorÔ(eW ,f), which is turning a given
vector pW around a unit vectoreW with an anglef. We can
write

Ô~eW ,f!pW 5~12cosf!~pW •eW !eW1~cosf!pW 1~sinf!eW3pW .
~16!

Now we define the basic deformations with the help of
operatorÔ. The deformations can be divided into five grou
and connected with relevant elastic constants. The first gr
~twists! is, for K1111,

~LW ,MW ,NW !5Ô~eW x ,ex!~LW ~0!,MW ~0!,NW ~0!!,

for K2222,

~LW ,MW ,NW !5Ô~eW y ,ey!~LW ~0!,MW ~0!,NW ~0!!,

and forK3333,

~LW ,MW ,NW !5Ô~eW z ,ez!~LW ~0!,MW ~0!,NW ~0!!. ~17!

The second group~splays and bends! is, for K1212,

LW 5
~z11/e,0,2x!

Ax21~z11/e!2
,

MW 5MW ~0!,

NW 5
~x,0,z11/e!

Ax21~z11/e!2
;

for K1313,

LW 5
~y11/e,2x,0!

Ax21~y11/e!2
,

MW 5
~x,y11/e,0!

Ax21~y11/e!2
,

NW 5NW ~0!;

for K2121,

LW 5LW ~0!,

MW 5
~0,z11/e,2y!

Ay21~z11/e!2
,

ns

e

up

NW 5
~0,y,z11/e!

Ay21~z11/e!2
;

for K2323,

LW 5
~x11/e,y,0!

A~x11/e!21y2
,

MW 5
~2y,x11/e,0!

A~x11/e!21y2
,

NW 5NW ~0!;

for K3131,

LW 5LW ~0!,

MW 5
~0,y11/e,z!

A~y11/e!21z2
,

NW 5
~0,2z,y11/e!

A~y11/e!21z2
;

and forK3232,

LW 5
~x11/e,0,z!

A~x11/e!21z2
,

MW 5MW ~0!,

NW 5
~2z,0,x11/e!

A~x11/e!21z2
. ~18!

The third group~modified twists! is, for L123,

~LW ,MW ,NW !5Ô~eW z ,ex!~LW ~0!,MW ~0!,NW ~0!!,

for L231,

~LW ,MW ,NW !5Ô~eW x ,ey!~LW ~0!,MW ~0!,NW ~0!!,

and forL312,

~LW ,MW ,NW !5Ô~eW y ,ez!~LW ~0!,MW ~0!,NW ~0!!. ~19!

The fourth group~double twists! is, for K1122,

~LW ,MW ,NW !5Ô~eW y ,ey!Ô~eW x ,ex!~LW ~0!,MW ~0!,NW ~0!!,

for K1133,

~LW ,MW ,NW !5Ô~eW x ,ex!Ô~eW z ,ez!~LW ~0!,MW ~0!,NW ~0!!,

and forK2233,

~LW ,MW ,NW !5Ô~eW z ,ez!Ô~eW y ,ey!~LW ~0!,MW ~0!,NW ~0!!. ~20!

The fifth group~double twists! is, for K1221,
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~LW ,MW ,NW !5Ô„~2eW x1eW y!/A2,e~x2y!/A2…

3Ô„~eW x1eW y!/A2,e~x1y!/A2…

3~LW ~0!,MW ~0!,NW ~0!!,

for K1331,

~LW ,MW ,NW !5Ô„~eW x2eW z!/A2,e~2x1z!/A2…

3Ô„~eW x1eW z!/A2,e~x1z!/A2…~LW ~0!,MW ~0!,NW ~0!!,

and forK2332,

~LW ,MW ,NW !5Ô„~2eW y1eW z!/A2,e~y2z!/A2…

3Ô„~eW y1eW z!/A2,e~y1z!/A2…

3~LW ~0!,MW ~0!,NW ~0!!. ~21!

Inside the formulas for deformations we used a small par
eter e (1/e is a length!. As this measure of a deformatio
goes to zero, a considered conformation becomes the i
one. The vectors of the local frame can be expanded in
power series with respect toe,

LW 5LW ~0!1eLW ~1!1e2LW ~2!1•••,

MW 5MW ~0!1eMW ~1!1e2MW ~2!1•••, ~22!

NW 5NW ~0!1eNW ~1!1e2NW ~2!1•••.

Let us consider expansion off d given by Eq.~10! with re-
spect toe. It is clear that the lowest ordere is the second one
~with e2). These terms contain linear parts of the local fra
with the exception ofSi jk terms, but later they will apper to
be unimportant. That is why we write below only linear pa
of the vectors for all deformations. The first group is, f
K1111,

LW ~1!5~0,0,0!, MW ~1!5~0,0,x!, NW ~1!5~0,2x,0!;

for K2222,

LW ~1!5~0,0,2y!, MW ~1!5~0,0,0!, NW ~1!5~y,0,0!;

and forK3333,

LW ~1!5~0,z,0!, MW ~1!5~2z,0,0!, NW ~1!5~0,0,0!.
~23!

The second group is, forK1212,

LW ~1!5~0,0,2x!, MW ~1!5~0,0,0!, NW ~1!5~x,0,0!;

for K1313,

LW ~1!5~0,2x,0!, MW ~1!5~x,0,0!, NW ~1!5~0,0,0!;

for K2121,

LW ~1!5~0,0,0!, MW ~1!5~0,0,2y!, NW ~1!5~0,y,0!;

for K2323,
-

al
a

e

LW ~1!5~0,y,0!, MW ~1!5~2y,0,0!, NW ~1!5~0,0,0!;

for K3131,

LW ~1!5~0,0,0!, MW ~1!5~0,0,z!, NW ~1!5~0,2z,0!;

and forK3232,

LW ~1!5~0,0,z!, MW ~1!5~0,0,0!, NW ~1!5~2z,0,0!.
~24!

The third group is, forL123,

LW ~1!5~0,x,0!, MW ~1!5~2x,0,0!, NW ~1!5~0,0,0!,

for L231,

LW ~1!5~0,0,0!, MW ~1!5~0,0,y!, NW ~1!5~0,2y,0!,

and forL312,

LW ~1!5~0,0,2z!, MW ~1!5~0,0,0!, NW ~1!5~z,0,0!.
~25!

The fourth group is, forK1122,

LW ~1!5~0,0,2y!, MW ~1!5~0,0,x!, NW ~1!5~y,2x,0!,

for K1133,

LW ~1!5~0,z,0!, MW ~1!5~2z,0,x!, NW ~1!5~0,2x,0!,

and forK2233,

LW ~1!5~0,z,2y!, MW ~1!5~2z,0,0!, NW ~1!5~y,0,0!.
~26!

The fifth group is, forK1221,

LW ~1!5~0,0,2x!, MW ~1!5~0,0,y!, NW ~1!5~x,2y,0!,

for K1331,

LW ~1!5~0,x,0!, MW ~1!5~2x,0,z!, NW ~1!5~0,2z,0!,

and forK2332,

LW ~1!5~0,y,2z!, MW ~1!5~2y,0,0!, NW ~1!5~z,0,0!.
~27!

One can calculate the distortion free energy from its den
by

Fd5E drW f d . ~28!

Below we write the lowest order ofFd for all deformations
labeled by the relevant elastic constants. The first group
for K1111,

Fd5
1

2
K1111e

2V,

for K2222,
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Fd5
1

2
K2222e

2V, ~29!

and forK3333,

Fd5
1

2
K3333e

2V.

The second group is, forK1212,

Fd5
1

2
K1212e

2V,

for K1313,

Fd5
1

2
K1313e

2V,

for K2121,

Fd5
1

2
K2121e

2V,

for K2323,

Fd5
1

2
K2323e

2V,

for K3131,

Fd5
1

2
K3131e

2V,

and forK3232,

Fd5
1

2
K3232e

2V. ~30!

The third group is, forL123,

Fd5
1

2
~K131314L123!e

2V,

for L231,

Fd5
1

2
~K212114L231!e

2V,

and forL312,

Fd5
1

2
~K323214L312!e

2V. ~31!

The fourth group is, forK1122,

Fd5SK11221
1

2
K11111

1

2
K22221L1232L2311L312D e2V,

for K1133,

Fd5SK11331
1

2
K11111

1

2
K33332L1231L2311L312D e2V,
for K2233,

Fd5SK22331
1

2
K22221

1

2
K33331L1231L2312L312D e2V.

~32!

The fifth group is, forK1221,

Fd5SK12211
1

2
K12121

1

2
K21211L2312L312D e2V,

for K1331,

Fd5SK13311
1

2
K13131

1

2
K31311L1232L231D e2V,

and forK2332,

Fd5SK23321
1

2
K23231

1

2
K32322L1231L312D e2V.

~33!

Note that only deformations from the first and the seco
group extract one constant from the distortion free ener
Deformations from remaining groups always give a n
constant together with previously found ones.

III. MICROSCOPIC APPROACH

A. Description of a system

In this section we focus on the microscopic analysis
nematic liquid crystals. Let us consider a dilute gas ofN
molecules contained in a volumeV at temperatureT. We
assume that the molecules are rigid blocks with three tra
lational and three rotational degrees of freedom. The stat
a molecule is described by a vector of positionrW and the
orientationR5(f,u,c), wheref, u, and c are the three
Euler angles. Letm, Jx , Jy, and Jz denote the mass of a
molecule and the three moments of inertia, respectively.
assume that the molecules interact via two-body short-ra
forces that depend on the distance between the molec
and their orientations;F12 gives the potential energy of in
teractions.

The free energy for our system can be derived in
thermodynamic limit (N→`,V→`,N/V5const) from the
Born-Bogoliubov-Green-Kirkwood-Yvon hierarchy@20#. It
is given by

bF5E d~1!G~1!$ ln@G~1!L6#21%

2
1

2E d~1!d~2!G~1!G~2! f 12, ~34!

whereG(1)5G(rW1 ,R1) is the one-particle distribution func
tion with the normalization

E d~1!G~1!5N, ~35!

d(1)5drW1dR15drW1df1du1sinu1dc1, f 125exp(2bF12)21
is the Mayer function,b51/kBT, and
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L65S h2b2p D 3~m3JxJyJz!
21/2. ~36!

The equilibrium distributionG minimizing the free energy
~34! satisfies

ln@G~1!L6#2E d~2!G~2! f 125const. ~37!

In the case of the homogeneous phase the distribu
G(1) does not depend on the position of a molecule and
can writeG(1)5G0(R1). It is convenient to use a dimen
sionless functionf (R)5G0(R)V/N with the normalization

E dR f~R!51. ~38!

In Ref. @20# the influence of symmetry of molecules and
phase onf (R) was discussed. We have to distinguish fo
different cases. Note that in our paper a biaxial phase~mol-
ecule! has theD2h symmetry group whereas a uniaxial pha
~molecule! has theD`h symmetry group.

~i! If a biaxial phase is composed of biaxial molecul
then f (R) can be expressed in terms of the invaria
Fmn
( j ) (R).
~ii ! If a biaxial phase is composed of uniaxial molecu

then f (R) can be expressed in terms of the invaria
Fm0
( j ) (R).
~iii ! If a uniaxial phase is composed of biaxial molecu

then f (R) can be expressed in terms of the invaria
F0n
( j )(R).
~iv! If a uniaxial phase is composed of uniaxial molecu

then f (R) can be expressed in terms of the invaria
F00
( j )(R)5Pj (cosu).

The definition and the main properties of the invaria
Fmn
( j ) are recalled in Appendix A.

B. Distribution function for a distorted phase

First we recall the simplest case of a uniaxial phase co
posed of uniaxial molecules. When the phase symmetry
coincides with thez axis, the homogeneous distribution fun
tion depends only on the cosinus of the angle between
molecule symmetry axis and the phase symmetry axis@6#

G0~nW !5G0~cosu!5G0~nW •eW z!, ~39!

wherenW 5(sinucosf,sinusinf,cosu) describes the orientatio
of the molecule. For a distorted phase the following obs
vation is often used: In a weakly distorted system, at a
point, the local properties are still those of a homogene
system; only the optical axis has been rotated. In terms of
distribution function this means that@6#

G~rW,nW !5G0„nW •NW ~rW !…, ~40!

whereNW (rW) is a director field.
Let us consider the most complex case of a biaxial ph

composed of biaxial molecules. We can describe the or
n
e

r

s

s

s

s
s

s

-
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e

r-
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e

e
n-

tation of a molecule both by the three Euler angles and
the set of the three orthonormal vectors (lW,mW ,nW ). In a space-
fixed reference frame (eW x ,eW y ,eW z) we can express them jus
like the vectors of the local frame~1!,

lW5R1aeWa5 l aeWa ,

mW 5R2aeWa5maeWa ,

nW 5R3aeWa5naeWa , ~41!

but now the matrix elementsRia do not depend on the pos
tion. We can say that the orientation is described by the n
elementsRia instead of the three angles. It is clear that ni
is more than enough. Because of symmetryf (R) should de-
pend only on (Ria)

2. Below we show that using the fou
elementsR1x , R1z , R3x, andR3z we can express the remain
ing ones

~R1y!
2512~R1x!

22~R1z!
2,

~R2x!
2512~R1x!

22~R3x!
2,

~R2y!
25~R1x!

21~R1z!
21~R3x!

21~R3z!
221,

~R2z!
2512~R1z!

22~R3z!
2,

~R3y!
2512~R3x!

22~R3z!
2. ~42!

Our four distinguished elements are still not independent
cause of the identity linking them,

2R1xR1zR3xR3z512~R1x!
22~R1z!

22~R3x!
22~R3z!

2

1~R1xR3z!
21~R1zR3x!

2. ~43!

It is not difficult to express one element in terms of the thr
remaining ones, but this leads to complicated formulas a
more importantly, it is not necessary. We should only g
the one possible functional dependence off (R) @and invari-
antsFmn

( j ) (R)# on four elementsR1x , R1z , R3x , andR3z . It
will not have to be the unique dependence. Note that dur
computations we should use only one fixed functional dep
dence.

Now we will find the functional dependence of the inva
ants onR1x , R1z , R3x , andR3z becausef (R) depends on
the invariants. We expect thatFmn

( j ) could be a sum of terms
proportional to products

~R1x!
a~R1z!

b~R3x!
c~R3z!

d, ~44!

wherea, b, c, andd are non-negative even numbers. Apa
from this we expect thatFmn

( j ) with j52s21 and j52s
should contain products witha1b1c1d<2s. We know
that for j52s21 ~s.0! there are (s21)2 invariants,
whereas forj52s ~s>0! there are (s11)2 invariants. Let us
compare the numberNs of products witha1b1c1d52s
with the numberÑs of Fmn

( j ) with j52s21 and j52s:

N051, Ñ051, ~45!

N1523334/654, Ñ154,
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N2533435/6510, Ñ2512132510,

N3543536/6520, Ñ3522142520,

N4553637/6535, Ñ4532152534,

N5563738/6556,Ñ5542162552,

Ns5~s13!!/ ~s!3! !,

Ñs5~s21!21~s11!252s212 for s.0.

Note that whens.3, Ns is greater thanÑs . This can be
easily understood by keeping in mind the identity~43! link-
ing our four elements. For instance, fors54 the product
p[(R1xR1zR3xR3z)

2 can be expressed by means of othe
We have the same fors55 and productsp(R1x)

2,
p(R1z)

2, p(R3x)
2, andp(R3z)

2.
Now we are in a position to present the procedure

determine the functional dependence ofFmn
( j ) on R1x , R1z ,

R3x, andR3z . First we choose the number of products~44!
equal toÑs for anys. Next we look for coefficients of every
product in a space created by the invariants~the orthogonal-
ity of Fmn

( j ) should be used!. We get products expressed
terms of invariants. Finally, we revert these relations to
tain invariants expressed in terms of products. Exemp
results of this procedure are listed in Appendix B.

Let Qi ( i51,2,3,4) denote the arguments of the distrib
tion G0, i.e.,

Q1~R!5R1x5 lW•eW x ,

Q2~R!5R1z5 lW•eW z ,

Q3~R!5R3x5nW •eW x ,

Q4~R!5R3z5nW •eW z . ~46!

We know the functional dependenceG0 onQi and we pos-
tulate that the distribution of the distorted phaseG(rW,R) can
be written as

G~rW,R!5G0~Q1 ,Q2 ,Q3 ,Q4!, ~47!

but the reference frame (eW x ,eW y ,eW z) should be replaced with
the local frame„LW (rW),MW (rW),NW (rW)…. Thus

Q1~rW,R!5 lW•LW ~rW !,

Q2~rW,R!5 lW•NW ~rW !,

Q3~rW,R!5nW •LW ~rW !,

Q4~rW,R!5nW •NW ~rW !. ~48!

We assume that the vectors of the local frame can be
panded into a power series with respect to the paramete
~similary to the phenomenological approach!. We can write

Qi5Qi
~0!1eQi

~1!1e2Qi
~2!1•••, ~49!
.

o

-
ry

-

x-

where

Q1
~p!~rW,R!5 lW•LW ~p!~rW !,

Q2
~p!~rW,R!5 lW•NW ~p!~rW !,

Q3
~p!~rW,R!5nW •LW ~p!~rW !,

Q4
~p!~rW,R!5nW •NW ~p!~rW !. ~50!

Let us write the expansion ofG

G~e!5G~0!1eG8~0!1
e2

2
G9~0!1•••, ~51!

or, more accurately,

G~rW,R!5G0~R!1e(
i51

4

] iG0~R!Qi
~1!~rW,R!

1e2(
i51

4

] iG0~R!Qi
~2!~rW,R!

1
e2

2 (
i , j51

4

] i] jG0~R!Qi
~1!~rW,R!Qj

~1!~rW,R!1O~e3!.

~52!

C. Distortion free energy

It is known in the literature@6# that to obtain the distortion
free energyFd one should substract a homogeneous p
F0 from the total free energyF. It is important thatF0 is not
equal to the free energy of a homogeneous phaseFH,

bFH5E d~1!G0~R1!$ ln@G0~R1!L6#21%

2
1

2E d~1!d~2!G0~R1!G0~R2! f 12. ~53!

It is not obvious what we should choose asF0. We pos-
tulate that

bF05E d~1!G~1!$ ln@G~1!L6#21%

2
1

4E d~1!d~2!G~rW1 ,R1!G~rW1 ,R2! f 12

2
1

4E d~1!d~2!G~rW2 ,R1!G~rW2 ,R2! f 12 ~54!

and

bFd5bF2bF0 . ~55!

This is a generalization of the expression for uniaxial ne
atic liquid crystals@5#.
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We substitute the expansion~52! into the deformation free
energy ~55!. When we make use of various identities th
come from the normalizations ofG0 and vectors of the loca
frame we get

bFd5
1

4E d~1!d~2! f 12e
2 (
i , j51

4

] iG0~R1!] jG0~R2!

3@22Qi
~1!~rW1 ,R1!Qj

~1!~rW2 ,R2!1Qi
~1!~rW1 ,R1!

3Qj
~1!~rW1 ,R2!1Qi

~1!~rW2 ,R1!Qj
~1!~rW2 ,R2!#1O~e3!.

~56!

Let us substitute the basic deformations~23!–~27! into the
free energy~56!. We denote

Ua5]1G0l a1]3G0na ,

Wa5]2G0l a1]4G0na . ~57!

We write the distortion energies for all deformations. T
first group is, forK1111,

bFd5E dR1dR2duW f 12e
2V
1

4
ux
2W1yW2y ,

for K2222,

bFd5E dR1dR2duW f 12e
2V
1

4
uy
2~U1z2W1x!~U2z2W2x!,

and forK3333,

bFd5E dR1dR2duW f 12e
2V
1

4
uz
2U1yU2y . ~58!

The second group is, forK1212,

bFd5E dR1dR2duW f 12e
2V
1

4
ux
2~U1z2W1x!~U2z2W2x!,

for K1313,

bFd5E dR1dR2duW f 12e
2V
1

4
ux
2U1yU2y ,

for K2121,

bFd5E dR1dR2duW f 12e
2V
1

4
uy
2W1yW2y ,

for K2323,

bFd5E dR1dR2duW f 12e
2V
1

4
uy
2U1yU2y ,

for K3131,

bFd5E dR1dR2duW f 12e
2V
1

4
uz
2W1yW2y ,

and forK3232,
t bFd5E dR1dR2duW f 12e
2V
1

4
uz
2~U1z2W1x!~U2z2W2x!.

~59!

The third group is, forL123,

bFd5E dR1dR2duW f 12e
2V
1

4
ux
2U1yU2y ,

for L231,

bFd5E dR1dR2duW f 12e
2V
1

4
uy
2W1yW2y ,

and forL312,

bFd5E dR1dR2duW f 12e
2V
1

4
uz
2~U1z2W1x!~U2z2W2x!.

~60!

The fourth group is, forK1122,

bFd5E dR1dR2duW f 12e
2V
1

4
$uy

2~U1z2W1x!~U2z2W2x!

1ux
2W1yW2y1uxuy@~U1z2W1x!W2y

1W1y~U2z2W2x!#%,

for K1133,

bFd5E dR1dR2duW f 12e
2V
1

4
@ux

2W1yW2y1uz
2U1yU2y

2uxuz~U1yW2y1W1yU2y!#,

and forK2233,

bFd5E dR1dR2duW f 12e
2V
1

4
$uy

2~U1z2W1x!~U2z2W2x!

1uz
2U1yU2y2uyuz@U1y~U2z2W2x!

1~U1z2W1x!U2y#%. ~61!

The fifth group is, forK1221,

bFd5E dR1dR2duW f 12e
2V
1

4
$ux

2~U1z2W1x!~U2z2W2x!

1uy
2W1yW2y1uxuy@~U1z2W1x!W2y

1W1y~U2z2W2x!#%,

for K1331,

bFd5E dR1dR2duW f 12e
2V
1

4
@ux

2U1yU2y1uz
2W1yW2y

2uxuz~U1yW2y1W1yU2y!#,

and forK2332,
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bFd5E dR1dR2duW f 12e
2V
1

4
$uz

2~U1z2W1x!~U2z2W2x!

1uy
2U1yU2y2uyuz@U1y~U2z2W2x!

1~U1z2W1x!U2y#%. ~62!

Note that we changed the variables

rW22rW15uW 5uaeWa , rW21rW15hW 5haeWa ~63!

and we integrated overhW becausef 12 does not depend on it

IV. ELASTIC CONSTANTS

A. Biaxial phase composed of biaxial molecules

In the previous sections we calculated the distortion f
energy from both macroscopic and microscopic points
view. Now we compare these expressions to obtain mic
scopic formulas for the elastic constants of the biaxial pha
The first group is

bK11115
1

2E dR1dR2duW f 12ux
2W1yW2y ,

bK22225
1

2E dR1dR2duW f 12uy
2~U1z2W1x!~U2z2W2x!,

~64!

bK33335
1

2E dR1dR2duW f 12uz
2U1yU2y .

The second group is

bK12125
1

2E dR1dR2duW f 12ux
2~U1z2W1x!~U2z2W2x!,

bK13135
1

2E dR1dR2duW f 12ux
2U1yU2y ,

bK21215
1

2E dR1dR2duW f 12uy
2W1yW2y ,

bK23235
1

2E dR1dR2duW f 12uy
2U1yU2y ,

bK31315
1

2E dR1dR2duW f 12uz
2W1yW2y ,

bK32325
1

2E dR1dR2duW f 12uz
2~U1z2W1x!~U2z2W2x!.

~65!

The third group is

L1235L2315L31250. ~66!

The fourth group is
e
f
-
e.

bK11225
1

4E dR1dR2duW f 12uxuy@~U1z2W1x!W2y

1W1y~U2z2W2x!#,

bK11335
1

4E dR1dR2duW f 12uxuz@2U1yW2y2W1yU2y#,

~67!

bK22335
1

4E dR1dR2duW f 12uyuz@2U1y~U2z2W2x!

2~U1z2W1x!U2y#.

The fifth group is

K12215K1122, K13315K1133, K23325K2233. ~68!

We note that three constants vanished and three others
peared to be dependent. The total number of indepen
constants is equal to 12.

B. Uniaxial phase composed of biaxial molecules

This phase is described by the distributionf (R) that de-
pends on the invariantsF0n

( j )(R). There is no dependence o
thef angle, thus

]1G05]3G050, Ua50. ~69!

The expressions for the elastic constants are

bK15
1

2E dR1dR2duW f 12ux
2W1xW2x , ~70!

bK25
1

2E dR1dR2duW f 12uy
2W1xW2x , ~71!

bK35
1

2E dR1dR2duW f 12uz
2W1xW2x , ~72!

K45
1

2
~K11K2!. ~73!

The remaining constants are equal to zero

K55K65K75K85K950. ~74!

Note that formulas~70!–~72! differ from the case of uniaxia
molecules, but we have the same number~3! of independent
constants.

C. Biaxial phase composed of uniaxial molecules

The phase is described by the distributionf (R) that de-
pends on the invariantsFm0

( j ) (R). As there is no dependenc
on thec angle one gets

]1G05]2G050. ~75!

The formulas for the elastic constants are just like the
pressions~64!–~68! for biaxial molecules, but we should us
the substitutions
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Ua5]3G0na , Wa5]4G0na . ~76!

D. Uniaxial phase composed of uniaxial molecules

This is the simplest case and we show that our mo
recovers the famous formulas by Poniewierski and Stecki@6#
with the direct correlation function replaced byf 12. The
phase is described by the invariantsF00

( j )(R). There is no
dependence on eitherf or c; thus

]1G05]2G05]3G050, Ua50. ~77!

The formulas for the elastic constants are just like the
pressions~70!–~74! for biaxial molecules, but we should us
the substitution

Wa5]4G0na . ~78!

V. EXEMPLARY CALCULATIONS

In this section, by means of the present general theory
carry out analytical and numerical calculations for a re
tively simple model with the interaction energy of the for
F12(u/s) @7,28#, whereu is the distance between molecul
(uW 5uDW ) and

s~R1 ,R2 ,DW !5s01s1@~DW •nW 1!
21~DW •nW 2!

2#1s2~nW 1•nW 2!
2

1s3@~DW • lW1!
21~DW • lW2!

2#1s4~ lW1• lW2!
2

1s5@~ lW1•nW 2!
21~ lW2•nW 1!

2#. ~79!

The functions is real and invariant under rotations and pe
mutation of molecules. Also the symmetry operations
molecules from theD2h symmetry group leaves invariant
@20#.

There are a number of possibilities for the functional d
pendence ofF12 on u/s. We give four examples, togethe
with a functionBs(T* ), defined as

Bs~T* !5E
0

`

dxxsf 12~x!5E
0

`

dxxs$exp@2bF12~x!#21%,

~80!

whereT*51/be is a dimensionless temperature ande is a
depth of the potential energy:~i! thehard-core potential en-
ergy

F12~u/s!HC5H 1` for u/s,1

0 for u/s.1,
~81!

Bs~T* !HC5
21

s11
5const; ~82!

~ii ! the soft-core potential energy

F12~u/s!SC5eSC~s/u!m, ~83!

Bs~T* !SC5
21

s11
GSm2s21

m D S 1

T* D ~s11!/m

exp~1/T* !;

~84!

~iii ! the square-well potential energy
el

-

e
-

-
n

-

F12~u/s!SW5H 1` for u/s,1

2eSW for 1,u/s,RSW

0 for u/s.RSW,

~85!

Bs~T* !SW5
1

s11
$@exp~1/T* !21#~RSW

s1121!21%;

~86!

and ~iv! theLennard-Jones m-n potential energy

F12~u/s!LJ54eLJ@~s/u!m2~s/u!n#, ~87!

Bs~T* !LJ5
21

s11(p50

`
1

p! S 4

T* D @p~m2n!1s11#/m

3GS pn1m2s21

m D ~88!

1
1

s11(p50

`
1

p!

n

mS 4

T* D @p~m2n!1m2n1s11#/m

3GS pn1n2s21

m D ~89!

The functionBs(T* ) is of great importance, i.e., to the prob
lem of the existence of the ordered phase.

We rewrite the general equation~37! for the distribution
function in the case of a homogeneous phase. Let us de

K~R1 ,R2!5E dDW ~s/s0!
3, ~90!

l5B2~T* !~s0
3N/V!. ~91!

The kernelK and the distribution functionf can be ex-
pressed in terms of invariantsF [ I ] ~see Appendix A!,

K~R,0!5 (
[ I ]5[1]

[35]

K [ I ]F [ I ]~R!, ~92!

lnf ~R!5 (
[ I ]5[1]

[35]

S[ I ]F [ I ]~R!. ~93!

Note that fors given by Eq.~79! both sums~92! and ~93!
arefinite series. Thus the distribution function of the hom
geneous phase is fully described by 35 coefficientsS[ I ] . Let
us define order parameters as

^F [ I ]&[E dR f~R!F [ I ]~R!. ~94!

The set of coefficientsSmn
j we derive from the equations

Smn
j 5l(

r
Krn
j ^Fmr

~ j ! & for j.0, ~95!

^F00
~0!&51 ~ the normalization condition!. ~96!
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Note that there is a mistake in these equations in Ref.@20#.
Now we move to the elastic constants. We can expand
distribution function f in an infinite series with respect t
invariantsFmn

( j ) ,

f ~R!5(
j

(
m,n

^Fmn
~ j ! &Fmn

~ j ! ~R!~2 j11!/8p2. ~97!

When we insert the series~97! into definitions ofWa and
Ua we get

Wa5~N/V!(
[ I ]

^F [ I ]&Wa
[ I ] ,

Ua5~N/V!(
[ I ]

^F [ I ]&Ua
[ I ] . ~98!

We can write all elastic constants asfinite sums of the form

Ki jkl5h (
[ I ]5[2]

[121]

(
[J]5[2]

[121]

^F [ I ]&^F [J]&Ai jkl
[ I ][ J] , ~99!

where

h5~e/s0!T*B4~T* !~s0
3N/V!2 ~100!

andA[ I ][ J] are functions of parameterss i . They are defined
as follows: for

A1111
[ I ][ J]5

1

2E dR1dR2dDW ~s/s0!
5Dx

2W1y
[ I ]W2y

[J] ,

A2222
[ I ][ J]5

1

2E dR1dR2dDW ~s/s0!
5Dy

2~U1z
[ I ]2W1x

[ I ] !

3~U2z
[J]2W2x

[J] !,

A3333
[ I ][ J]5

1

2E dR1dR2dDW ~s/s0!
5Dz

2U1y
[ I ]U2y

[J] ,

A1212
[ I ][ J]5

1

2E dR1dR2dDW ~s/s0!
5Dx

2~U1z
[ I ]2W1x

[ I ] !

3~U2z
[J]2W2x

[J] !,

A1313
[ I ][ J]5

1

2E dR1dR2dDW ~s/s0!
5Dx

2U1y
[ I ]U2y

[J] ,

A2121
[ I ][ J]5

1

2E dR1dR2dDW ~s/s0!
5Dy

2W1y
[ I ]W2y

[J] ,

A2323
[ I ][ J]5

1

2E dR1dR2dDW ~s/s0!
5Dy

2U1y
[ I ]U2y

[J] ,

A3131
[ I ][ J]5

1

2E dR1dR2dDW ~s/s0!
5Dz

2W1y
[ I ]W2y

[J] ,
e A3232
[ I ][ J]5

1

2E dR1dR2dDW ~s/s0!
5Dz

2~U1z
[ I ]2W1x

[ I ] !

3~U2z
[J]2W2x

[J] !,

A1122
[ I ][ J]5

1

2E dR1dR2dDW ~s/s0!
5DxDy~U1z

[ I ]2W1x
[ I ] !W2y

[J] ,

A1133
[ I ][ J]5

21

2 E dR1dR2dDW ~s/s0!
5DxDzU1y

[ I ]W2y
[J] ,

A2233
[ I ][ J]5

21

2 E dR1dR2dDW ~s/s0!
5DyDz~U1z

[ I ]2W1x
[ I ] !U2y

[J] .

~101!

We would like to stress that allA[ I ][ J] can be calculated
analytically. As there are 12 different elastic constants w
1203120514 400 functionsA[ I ][ J] , which have an eightfold
integration, it is a very time consuming task. In order to g
some estimation of the values of the elastic constants
performed calculations numerically with a rather rough a
proximation that the most important are two order para
eters^F00

(2)& and ^F22
(2)&. We assumed the square-well pote

tial energy of interactions withRSW52 and a density equa
to 1/5 of close-packed density. We show how to calculate
close-packed density. The mutually excluded volumeVe of
two molecules with fixed orientationsR1 andR2 is equal to

Ve~R1 ,R2!5E dDW s3/35K~R1 ,R2!s0
3/3. ~102!

We assume that the volume of a molecule is equal to

Vmol5Ve~0,0!/85K~0,0!s0
3/245(

j
(
m

Kmm
j s0

3/24.

~103!

We usedV/N55Vmol . According to Ref.@20#, we assumed
that molecules are similar to ellipsoids with three differe
axes (2a)3(2b)3(2c), wherea,b,c. Then, by means of
the excluded volume method@20# we get

s052b, s15c2b, s35a2b, s25s45s550.
~104!

In our calculations we appliedc53b59a. Note thats0 de-
termines the length scale, whereaseSWdetermines the energ
scale. The elastic constants can be expressed ineSW/s0.

In our system, on decreasing the temperature we mee
first-order transition to the uniaxial nematic phase
T*50.64 and the second-order transition to the biaxial ne
atic phase atT*50.32 @20#. The temperature dependence
the two order parameterŝF00

(2)& and ^F22
(2)& is presented in

Fig. 1. The order parameters were used to calculate the
perature dependence of the elastic constants shown in Fi

In the nematic phase generally three independent c
stants are present:K15K12125K2121, K35K31315K3232,
and K25K11115K2222. We plotted also the negative con
stantK1122, which in this phase is equal to (K22K1)/2. Note
that the equalityK15K3 is accidental and results from sim
plifying the assumption that we take into account only tw
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order parameterŝF00
(2)& and ^F22

(2)&. Typically, for rodlike
molecules we get inequalitiesK3.K1.K2.

In the biaxial phase we have 12 independent consta
K1 splits intoK1212 andK2121 (K1212.K2121), K3 splits into
K3232 and K3131 (K3232.K3131), K2 splits into K2222 and
K1111 (K2222.K1111), andK1122becomes a new independe
constant. Other new independent constants are four pos
K1133.K1313.K2323.K3333 and one negativeK2233. Note
thatK1313, K2323,andK3333 are about an order of magnitud
smaller thanK1133, but they have a similar temperature d
pendence. We noticed that in the biaxial phase in the ne
borhood of the transition point four constants reveal unus
behavior.K3131, K2121, and K1111 decreaseon decreasing
the temperature andK1122 increaseson decreasing the tem
perature. Unfortunately, it is not clearly visible in the pictur

FIG. 1. Temperature dependence of the order parame
S5^F00

2 & andV5^F22
2 & ~we use the Straley notation!. T denotes the

dimensionless temperatureT* .

FIG. 2. Temperature dependence of the elastic constants. In
uniaxial nematic phase~betweenT*50.64 and T*50.32) we
have K15K12125K2121 equal to K35K31315K3232 and
K25K11115K2222. In addition we haveK11225(K22K1)/2. In the
biaxial nematic phase~belowT*50.32) K1, K3, andK2 split into
two constants andK1122 becomes an independent constant. Ap
from that, one negative (K2233) and four positive
(K1133.K1313.K2323.K3333) constants appear.T denotes the di-
mensionless temperatureT* .
ts.

ve

h-
al

.

VI. CONCLUSION

In this paper we derived the microscopic formulas f
elastic constants of biaxial nematic liquid crystals. In ord
to calculate the values of elastic constants one needs
one-particle distribution function and the potential energy
molecular interactions. The theory was developed for ri
molecules interacting via two-body short-range forces. W
showed that the potential energy of the formF12(r /s) is
extremely useful for calculations. It allows us to express
elastic constants as afinite series in terms of the order pa
rameters. Apart from that the potential energyF12(r /s)
makes the role of the temperature more visible. The temp
ture determines the order parameters via the func
B2(T* ) in l @Eq. ~91!# and it has a direct influence on th
elastic constants via the functionB4(T* ) in h @Eq. ~100!#.

Our theory was applied to a system of molecules sim
to ellipsoids and the temperature dependence of the ela
constants in uniaxial and biaxial nematics phase was
tained.

We sum up our results by a comparison to the paper
Singhet al. @22# because both works have a lot in commo
We will list predictions of Singhet al.using our notation and
will add our comments.

~i! During the transition from a uniaxial to a biaxial pha
K1 splits into K1212 and K2121, K3 splits into K3232 and
K3131, K2 splits intoK2222 andK1111, andK1122 becomes a
new independent constant.

~ii ! Seven constants, viz.,K1212, K2121, K3232, K3131,
K2222, K1111, andK1122, have a nearly equal value and a
of the order of the values found in a uniaxial phase.

~iii ! Three constants, viz.,K3333, K1313, andK2323, are
three or four orders of magnitude smaller than the value
the constants found in a uniaxial phase.

~iv! K1133 and K2233 are about one order of magnitud
smaller thanK1122.

~v! K1122,0, K1133.0, andK2233,0.
~vi! If ^F02

(2)&5^F20
(2)&50 ~and also higher-order param

eters! thenK15K3, K32325K1212, andK31315K2121.

All predictions are confirmed by our results except~iii !
and ~iv!. It is easy to find the origin. Singhet al. assumed
that^F22

(2)&/^F00
(2)&;0.01, but it is true only near the transitio

point. For low temperatures our^F22
(2)& and ^F00

(2)& have the
same order of magnitude.

We would like to stress that contrary to Singhet al., we
obtained a full temperature dependence of the elastic c
stants, not only an estimation of their values. We could a
establish the relations between split constants in our mo

Our result~68! implies that there are the following rela
tions among the elastic constants from the paper of Sa
@14#:

Cab54k0,c , Cbc54 k0,a , Cca54 k0,b . ~105!

As far as we know, these relations have not been presente
the literature. In the case of the uniaxial phase they give
Cauchy relation from the paper of Nehring and Saupe@3#
@Eq. ~73! in our notation#.

rs

he

t



fu
l
it
x
to
en
ls

fu

nd

l-

e

in
e

ts
-

55 7103STATISTICAL THEORY OF ELASTIC CONSTANTS OF . . .
The uniaxial version of the present theory was success
applied 15 years ago@7#. We are convinced that the biaxia
version can be a useful tool for experimenters dealing w
biaxial nematic liquid crystals. In the future we expect e
perimental data for the elastic constants of biaxial nema
gens as, according to Kini and Chandrasekhar, experim
are feasible@18# and the number of known biaxial materia
increased@29#.
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APPENDIX A

Let us recall the main properties of the invariantsFmn
( j ) ,

which describe biaxial and uniaxial molecules in biaxial a
uniaxial phases.

~i! The definition is

Fmn
~ j ! ~R!5S 1

A2D
21dm01d0n

(
r,s561

~21! j ~s2r!/2

3Drm,sn
~ j ! ~R!, ~A1!

where j is a non-negative integer. Ifj is even, then
0<m< j and 0<n< j . If j is odd, then 2<m< j and
2<n< j . FunctionsDmn

( j ) (R) are standard rotation matrix e
ements.

~ii ! The invariants are real functions.
~iii ! Let R215(2c,2u,2f) denote the rotation invers

to R5(f,u,c). Then

Fmn
~ j ! ~R21!5Fnm

~ j ! ~R!. ~A2!

~iv! For the zero rotation we have

Fmn
~ j ! ~0!5dmn . ~A3!

~v! The invariants satisfy the orthogonality relations

E dRFmn
~ j ! ~R!Frs

~k!~R!5d jkdmrdns8p2/~2 j11!. ~A4!

More generally, we can write

E dRFmn
~ j ! ~R!Frs

~k!~R1
21R!

5d jkFmr
~ j ! ~R1!Fns

~ j !~0!8p2/~2 j11!. ~A5!

~vi! For a given j52s and j52s11 there are (s11)2

ands2 invariants, respectively.
~vii ! In order to get a more transparent form of certa

formulas we introduce alternative labeling of invariants. W
replace indicators (j ,m,n) with an indicator@ I #, where I
runs from 1 by 1 to infinity. For two indicators
@ I #5( j ,m,n) and @J#5(k,r,s) we can write that@ I #,@J#
only when j,k, or when j5k and m,r, or when j5k,
m5r, andn,s. We have, for example,
ly

h
-
-
ts

l

@1#5~0,0,0!,

@2#5~2,0,0!,

@3#5~2,0,2!,

@4#5~2,2,0!,

@5#5~2,2,2!,

@6#5~3,2,2!,

@7#2@15# for ~4,m,n!,

@16#2@19# for ~5,m,n!,

@20#2@35# for ~6,m,n!,

@36#2@44# for ~7,m,n!,

@45#2@69# for ~8,m,n!,

@70#2@85# for ~9,m,n!,

@86#2@121# for ~10,m,n!. ~A6!

APPENDIX B

We list the invariantsFmn
( j ) expressed in terms of produc

(R1x)
a(R1z)

b(R3x)
c(R3z)

d for j50, 2, 3, and 4 as an exem
plary result of the procedure described in Sec. III D:

F00
~0!51,

F00
~2!5

1

2
@2113~R3z!

2#,

F02
~2!5

A3
2

@211~R3z!
212 ~R1z!

2#,

F20
~2!5

A3
2

@211~R3z!
212~R3x!

2#,

F22
~2!5

1

2
@231~R3z!

212 ~R1z!
212~R3x!

214~R1x!
2#,

F22
~3!52~R3z!

21~R1z!
21~R3x!

22~R1x!
213~R1x!

2~R3z!
2

23~R1z!
2~R3x!

2,

F00
~4!5

1

8
@3230~R3z!

2135~R3z!
4#,

F02
~4!5

A5
4

@128~R3z!
222~R1z!

217~R3z!
4

114~R1z!
2~R3z!

2#,

F04
~4!5

A35
8

@122~R3z!
228~R1z!

21~R3z!
4

18~R1z!
2~R3z!

218~R1z!
4#,
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F20
~4!5

A5
4

@128~R3z!
222~R3x!

217~R3z!
4

114~R3x!
2~R3z!

2#,

F22
~4!5

11

2
210~R3z!

226~R3x!
21

7

2
~R3z!

417~R3x!
2~R3z!

2

26~R1z!
217~R1z!

2~R3z!
225~R1x!

217~R1z!
2~R3x!

2

17~R1x!
2~R3z!

2,

F24
~4!5

A7
4

@728~R3z!
226~R3x!

21~R3z!
412~R3x!

2~R3z!
2

216~R1z!
218~R1z!

2~R3z!
228~R1x!

2

18~R1z!
2~R3x!

218~R1x!
2~R3z!

218~R1z!
4

116~R1x!
2~R1z!

2#,
J.
F40
~4!5

A35
8

@122~R3z!
228~R3x!

21~R3z!
418~R3x!

2~R3z!
2

18~R3x!
4#,

F42
~4!5

A7
4

@728 ~R3z!
2216~R3x!

21~R3z!
418~R3x!

2~R3z!
2

26~R1z!
212~R1z!

2~R3z!
228~R1x!

218~R1z!
2~R3x!

2

18~R1x!
2~R3z!

218~R3x!
4116~R1x!

2~R3x!
2#,

F44
~4!5

33

8
2
13

4
~R3z!

225~R3x!
21

1

8
~R3z!

41~R3x!
2~R3z!

2

25~R1z!
21~R1z!

2~R3z!
2212~R1x!

21~R3x!
4

14~R1z!
2~R3x!

214~R1x!
2~R3z!

21~R1z!
4

18~R1x!
2~R1z!

218~R1x!
2~R3x!

218~R1x!
4.
t.
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